in

Small vertebrates are key elements in the frugivory networks of a hyperdiverse tropical forest

  • 1.

    Banks-leite, C., Ewers, R. M. & Metzger, J. P. Unraveling the drivers of community dissimilarity and species extinction in fragmented landscapes. Ecology 93, 2560–2569 (2012).

    PubMed  Google Scholar 

  • 2.

    Ripple, W. J. et al. Saving the world’s terrestrial megafauna. Bioscience XX, 1–6 (2016).

    Google Scholar 

  • 3.

    Galetti, M. & Dirzo, R. Ecological and evolutionary consequences of living in a defaunated world. Biol. Conserv. 163, 1–6 (2013).

    Google Scholar 

  • 4.

    Dirzo, R. et al. Defaunation in the anthropocene. Science (80-) 345, 401–406 (2014).

    ADS  CAS  Google Scholar 

  • 5.

    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).

    Google Scholar 

  • 6.

    Barraclough, T. G. How do species interactions affect evolutionary dynamics across whole communities?. Annu. Rev. Ecol. Evol. Syst. 46, 25–48 (2015).

    Google Scholar 

  • 7.

    Effiom, E. O., Nunez-Iturri, G., Smith, H. G., Ottosson, U. & Olsson, O. Bushmeat hunting changes regeneration of African rainforests. Proc. R. Soc. B 280, 1–8 (2013).

    Google Scholar 

  • 8.

    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Galetti, M. et al. Seed predation by rodents and implications for plant recruitment in defaunated Atlantic forests. Biotropica 47, 521–525 (2015).

    Google Scholar 

  • 10.

    Keesing, F. Impacts of ungulates on the demography and diversity of small mammals in central Kenya. Oecologia 116, 381–389 (1998).

    ADS  PubMed  Google Scholar 

  • 11.

    Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Glob. Ecol. Conserv. 3, 824–830 (2015).

    Google Scholar 

  • 12.

    Bovendorp, R. S. et al. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography (Cop.) https://doi.org/10.1111/ecog.03504 (2018).

    Article  Google Scholar 

  • 13.

    Beck, H., Snodgrass, J. W. & Thebpanya, P. Long-term exclosure of large terrestrial vertebrates: Implications of defaunation for seedling demographics in the Amazon rainforest. Biol. Conserv. 163, 115–121 (2013).

    Google Scholar 

  • 14.

    Kurten, E. L. Cascading effects of contemporaneous defaunation on tropical forest communities. Biol. Conserv. 163, 22–32 (2013).

    Google Scholar 

  • 15.

    Jordano, P. Chasing ecological interactions. PLoS Biol. 14, 2–5 (2016).

    Google Scholar 

  • 16.

    Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–471 (2013).

    ADS  PubMed  Google Scholar 

  • 17.

    Janzen, D. H. The deflowering of Central America. Nat. Hist. New York 83, 48–53 (1974).

    Google Scholar 

  • 18.

    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

    Google Scholar 

  • 19.

    Jordano, P. Fruits and frugivory. In Seeds: The Ecology of Regeneration in Plant Communities. 125–166 (2000).

  • 20.

    Terborgh, J. Community aspects of frugivory in tropical forests. In Frugivores and Seed Dispersal. 371–384 (1986).

  • 21.

    Raimundo, R. L. G., Guimarães, P. R. & Evans, D. M. Adaptive networks for restoration ecology. Trends Ecol. Evol. 33, 664–675 (2018).

    PubMed  Google Scholar 

  • 22.

    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 57–93 (2007).

    MATH  Google Scholar 

  • 23.

    Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. 100, 9383–9387 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science (80-) 329, 853–856 (2010).

    ADS  Google Scholar 

  • 26.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Thébault, E. Identifying compartments in presence-absence matrices and bipartite networks: Insights into modularity measures. J. Biogeogr. 40, 759–768 (2013).

    Google Scholar 

  • 28.

    Montoya, D., Yallop, M. L. & Memmott, J. Functional group diversity increases with modularity in complex food webs. Nat. Commun. 6, 1–9 (2015).

    Google Scholar 

  • 29.

    Kolchinsky, A., Gates, A. J. & Rocha, L. M. Modularity and the spread of perturbations in complex dynamical systems. Phys. Rev. E Stat. Nonlinear Soft Matter. Phys. 92, 1–9 (2015).

    Google Scholar 

  • 30.

    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Harvey, E., Gounand, I., Ward, C. L. & Altermatt, F. Bridging ecology and conservation: from ecological networks to ecosystem function. J. Appl. Ecol. 54, 371–379 (2017).

    Google Scholar 

  • 32.

    Raimundo, R. L. G. G., Guimarães, P. R., Evans, D. M., Jr, P. R. G. & Evans, D. M. Adaptive networks for restoration ecology. Trends Ecol. Evol. 33, 664–675 (2018).

    PubMed  Google Scholar 

  • 33.

    Sebastián-González, E., Dalsgaard, B., Sandel, B. & Guimarães, P. R. Macroecological trends in nestedness and modularity of seed-dispersal networks: human impact matters. Glob. Ecol. Biogeogr. 24, 293–303 (2015).

    Google Scholar 

  • 34.

    Emer, C. et al. Seed-dispersal interactions in fragmented landscapes—a metanetwork approach. Ecol. Lett. 21, 484–493 (2018).

    PubMed  Google Scholar 

  • 35.

    Ramos-Robles, M., Andresen, E. & Díaz-Castelazo, C. Modularity and robustness of a plant-frugivore interaction network in a disturbed tropical forest. Ecoscience 25, 209–222 (2018).

    Google Scholar 

  • 36.

    de Almeida, A. & Mikich, S. B. Combining plant–frugivore networks for describing the structure of neotropical communities. Oikos 127, 184–196 (2018).

    Google Scholar 

  • 37.

    Boesing, A. L., Nichols, E. & Metzger, J. P. Biodiversity extinction thresholds are modulated by matrix type. Ecography 41, 1–14 (2018).

    Google Scholar 

  • 38.

    Bonfim, J. A. et al. Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography (Cop.) https://doi.org/10.1111/ecog.03592 (2018).

    Article  Google Scholar 

  • 39.

    Morellato, P. C. & Haddad, C. F. B. Introduction: the Brazilian Atlantic forest. Biotropica 32, 786–792 (2000).

    Google Scholar 

  • 40.

    Bascompte, J. & Jordano, P. The structure of plant–animal mutualistic networks. In Ecological Networks: Linking Structure to Dynamics in Food Webs. 143–159 (2006).

  • 41.

    Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).

    Google Scholar 

  • 42.

    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).

    Google Scholar 

  • 43.

    Blüthgen, N., Fründ, J., Vázquez, D. P. & Menzel, F. What do interaction network metrics tell us about specialization and biological traits. Ecology 89, 3387–3399 (2008).

    PubMed  Google Scholar 

  • 44.

    Dáttilo, W., Vizentin-Bugoni, J., Debastiani, V. J., Jordano, P. & Izzo, T. J. The influence of spatial sampling scales on ant–plant interaction network architecture. J. Anim. Ecol. 88, 903–914 (2019).

    PubMed  Google Scholar 

  • 45.

    Dátillo, W. et al. Unravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proc. R. Soc. B Biol. Sci. 283 (2016).

  • 46.

    R Core Team. A language and environment for statistical computing. (2017).

  • 47.

    Giacomini, H. C. & Galetti, M. An index for defaunation. Biol. Conserv. 163, 33–41 (2013).

    Google Scholar 

  • 48.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Google Scholar 

  • 49.

    Woodward, G. et al. Body size in ecological networks. Trends Ecol. Evol. 20, 402–409 (2005).

    PubMed  Google Scholar 

  • 50.

    Hansen, D. M. & Galetti, M. The forgotten megafauna. Science (80-) 324, 42–43 (2009).

    ADS  CAS  Google Scholar 

  • 51.

    IUCN. The IUCN Red List of Threatened Species. (2016).

  • 52.

    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

    Google Scholar 

  • 53.

    Fragoso, J. M. V. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon rain forest. J. Ecol. 85, 519–529 (1997).

    Google Scholar 

  • 54.

    Glanz, W. E., Thorington-Jr, R. W., Giacalone-Madden, J. & Heaney, L. R. Seasonal food use and demographic trends in Sciurus granatensis. In In the Ecology of a Tropical Forest: Seasonal Rhythms and Long-Term Changes. 239–252 (1982).

  • 55.

    Hulme, P. E. Post-dispersal seed predation: consequences for plant demography and evolution. Perspect. Plant Ecol. Evol. Syst. 1, 32–46 (1998).

    Google Scholar 

  • 56.

    Muñoz, A., Bonal, R. & Espelta, J. M. Responses of a scatter-hoarding rodent to seed morphology: links between seed choices and seed variability. Anim. Behav. 84, 1435–1442 (2012).

    Google Scholar 

  • 57.

    Morales, J. M., García, D., Martínez, D., Rodriguez-Pérez, J. & Herrera, J. M. Frugivore behavioural details matter for seed dispersal: A multi-species model for cantabrian Thrushes and trees. PLoS One 8, (2013).

  • 58.

    Vale, M. M., Tourinho, L., Lorini, M. L., Rajão, H. & Figueiredo, M. S. L. Endemic birds of the Atlantic Forest: traits, conservation status, and patterns of biodiversity. J. F. Ornithol. 89, 193–206 (2018).

    Google Scholar 

  • 59.

    Governo do Estado de São Paulo. Parque estadual de Carlos Botelho: Plano de Manejo. (2008).

  • 60.

    Guix, J. C. & Ruiz, X. Plant-disperser-pest evolutionary triads: how widespread are they? Orsis 121–126 (2000).

  • 61.

    Thompson, J. N. The Geographic Mosaic of Coevolution. (2005).

  • 62.

    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    ADS  CAS  PubMed  MATH  Google Scholar 

  • 63.

    Prado, P. I. & Lewinsohn, T. M. Compartments in insect—plant associations and their consequences for community structure. J. Anim. Ecol. 73, 1168–1178 (2004).

    Google Scholar 

  • 64.

    Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant-animal interactions. Ecol. Lett. 6, 69–81 (2003).

    Google Scholar 

  • 65.

    Silva, W. R., Guimarães-Jr, P. R., Reis, S. F. & Guimarães, P. Investigating fragility in plant–frugivore networks: a case study of the Atlantic forest in Brazil. In Seed Dispersal: Theory and Its Application in a Changing World. 561–578 (2007).

  • 66.

    Pimentel, D. S. & Tabarelli, M. Seed dispersal of the palm Attalea oleifera in a remnant of the Brazilian Atlantic forest. Biotropica 36, 74–84 (2004).

    Google Scholar 

  • 67.

    Carnicer, J., Jordano, P. & Melian, C. J. The temporal dynamics of resource use by frugivorous birds: a network approach. Ecology 90, 1958–1970 (2009).

    PubMed  Google Scholar 

  • 68.

    Wright, S. J. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspect. Plant Ecol. Evol. Syst. 6, 73–86 (2003).

    Google Scholar 

  • 69.

    Dirzo, R., Mendoza, E. & Ortíz, P. Size-related differential seed predation in a heavily defaunated neotropical rain forest. Biotropica 39, 355–362 (2007).

    Google Scholar 

  • 70.

    Cardillo, M. Biological determinants of extinction risk: why are smaller species less vulnerable?. Anim. Conserv. 6, 63–69 (2003).

    Google Scholar 

  • 71.

    Pardini, R., Bueno, A. de A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis : regime shifts in biodiversity across fragmented landscapes. PLoS One 5 (2010).

  • 72.

    Chiarello, A. G. Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biol. Conserv. 89, 71–82 (1999).

    Google Scholar 

  • 73.

    Laurance, W., Vasconcelos Heraldo, L. & Lovejoy Thomas, E. Forest loss and fragmentation in the Amazon: Implications for wildlife conservation. Oryx 34, 39–45 (2000).

    Google Scholar 

  • 74.

    Almeida-Neto, M., Campassi, F., Galetti, M., Jordano, P. & Oliveira-Filho, A. Vertebrate dispersal syndromes along the Atlantic forest: broad-scale patterns and macroecological correlates. Glob. Ecol. Biogeogr. 17, 503–513 (2008).

    Google Scholar 

  • 75.

    Redford, K. H. & Feinsinger, P. The half-empty forest: sustainable use and the ecology of interactions. In Conservation of Exploited Species. 370–399 (2001).

  • 76.

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Google Scholar 

  • 77.

    Mills, L. S., Soule, M. E. & Doak, D. F. The Keystone-species concept in ecology and conservation. Bioscience 43, 219–224 (1993).

    Google Scholar 

  • 78.

    Weckel, M., Giuliano, W. & Silver, S. Jaguar (Panthera onca) feeding ecology: distribution of predator and prey through time and space. J. Zool. 270, 25–30 (2006).

    Google Scholar 

  • 79.

    Fleming, T. H. & Sosa, V. J. Effects of nectarivorous and frugivorous mammals on reproductive success of plants. J. Mammal. 75, 845–851 (1994).

    Google Scholar 

  • 80.

    Galetti, M., Keuroghlian, A., Hanada, L. & Morato, M. I. Frugivory and seed dispersal by the Lowland Tapir (Tapirus terrestris) in Southeast Brazil. Biotropica 33, 723–726 (2001).

    Google Scholar 

  • 81.

    Muradian, R. Ecological thresholds: A survey. Ecol. Econ. 38, 7–24 (2001).

    Google Scholar 

  • 82.

    Huggett, A. J. The concept and utility of ‘ecological thresholds’ in biodiversity conservation. Biol. Conserv. 124, 301–310 (2005).

    Google Scholar 

  • 83.

    Cincotta, R. P., Wisnewski, J. & Engelman, R. Human population in the biodiversity hotspots. Nature 404, 990–992 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 84.

    Wigley, B. J., Bond, W. J. & Hoffman, M. T. Thicket expansion in a South African savanna under divergent land use: local vs. global drivers?. Glob. Chang. Biol. 16, 964–976 (2010).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion

    The biodiversity leader who is fighting for nature amid a pandemic