in

Societal attention toward extinction threats: a comparison between climate change and biological invasions

  • 1.

    Knight, A. T. et al. Knowing but not doing: selecting priority conservation areas and the research–implementation gap. Conserv. Biol. 22, 610–617 (2008).

    PubMed  Google Scholar 

  • 2.

    Schindler, S. et al. From research to implementation: nature conservation in the Eastern Rhodopes mountains (Greece and Bulgaria), European Grenn Belt. J. Nat. Conserv. 19, 193–201 (2011).

    Google Scholar 

  • 3.

    Schultz, P. W. Conservation means behavior. Conserv. Biol. 25, 1080–1083 (2011).

    PubMed  Google Scholar 

  • 4.

    Stokes, D. L. Things we like: human preferences among similar organisms and implications for conservation. Hum. Ecol. 35, 361–369 (2007).

    Google Scholar 

  • 5.

    Kim, J. Y., Do, Y., Im, R. Y., Kim, G. Y. & Joo, G. J. Use of large web-based data to identify public interest and trends related to endangered species. Biodivers. Conserv. 23, 2961–2984 (2014).

    Google Scholar 

  • 6.

    Ladle, R. J. et al. Conservation culturomics. Front. Ecol. Environ. 14, 269–275 (2016).

    Google Scholar 

  • 7.

    Sutherland, W. J. et al. A 2018 horizon scan of emerging issues for global conservation and biological diversity. Trends Ecol. Evol. 33, 47–58 (2018).

    PubMed  Google Scholar 

  • 8.

    Roll, U. et al. Using Wikipedia page views to explore the cultural importance of global reptiles. Biol. Conserv. 204, 42–50 (2016).

    Google Scholar 

  • 9.

    Correia, R. A. et al. Nomenclature instability in species culturomic assessments: why synonyms matter. Ecol. Indic. 90, 74–78 (2018).

    Google Scholar 

  • 10.

    Jarić, I. et al. On the overlap between scientific and societal taxonomic attentions—Insights for conservation. Sci. Tot. Environ. 648, 772–778 (2019).

    Google Scholar 

  • 11.

    Retka, J. et al. Assessing cultural ecosystem services of a large marine protected area through social media photographs. Ocean Coast. Manage. 176, 40–48 (2019).

    Google Scholar 

  • 12.

    Toivonen, T. et al. Social media data for conservation science: A methodological overview. Biol. Conserv. 233, 298–315 (2019).

    Google Scholar 

  • 13.

    Mccallum, M. L. & Bury, G. W. Google search patterns suggest declining interest in the environment. Biodivers. Conserv. 22, 1355–1367 (2013).

    Google Scholar 

  • 14.

    Anderegg, W. R. & Goldsmith, G. R. Public interest in climate change over the past decade and the effects of the ‘climategate’ media event. Environ. Res. Lett. 9, 054005. https://doi.org/10.1088/1748-9326/9/5/054005 (2014).

    ADS  Article  Google Scholar 

  • 15.

    Funk, S. M. & Rusowsky, D. The importance of cultural knowledge and scale for analysing internet search data as a proxy for public interest toward the environment. Biodivers. Conserv. 23, 3101–3112 (2014).

    Google Scholar 

  • 16.

    Proulx, R., Massicotte, P. & Pépino, M. Googling trends in conservation biology. Conserv. Biol. 28, 44–51 (2014).

    PubMed  Google Scholar 

  • 17.

    Veríssimo, D., MacMillan, D. C., Smith, R. J., Crees, J. & Davies, Z. G. Has climate change taken prominence over biodiversity conservation?. Bioscience 64, 625–629 (2014).

    Google Scholar 

  • 18.

    Nghiem, L. T., Papworth, S. K., Lim, F. K. & Carrasco, L. R. Analysis of the capacity of Google Trends to measure interest in conservation topics and the role of online news. PLoS ONE 11, e0152802. https://doi.org/10.1371/journal.pone.0152802 (2016).

    CAS  Article  PubMed Central  Google Scholar 

  • 19.

    Burivalova, Z., Butler, R. A. & Wilcove, D. S. Analyzing Google search data to debunk myths about the public’s interest in conservation. Front. Ecol. Environ. 16, 509–514 (2018).

    Google Scholar 

  • 20.

    Legagneux, P. et al. Our house is burning: discrepancy in climate change vs biodiversity coverage in the media as compared to scientific literature. Front. Ecol. Evol. 5, 175. https://doi.org/10.3389/fevo.2017.00175 (2018).

    Article  Google Scholar 

  • 21.

    Correia, R. A. et al. Inferring public interest from search engine data requires caution. Front. Ecol. Environ. 17, 254–255 (2019).

    Google Scholar 

  • 22.

    Troumbis, A. Y. The time and timing components of conservation culturomics cycles and scenarios of public interest in the Google era. Biodivers. Conserv. 28, 1717–1727 (2019).

    Google Scholar 

  • 23.

    Dukes, J. S. & Mooney, H. A. Does global change increase the success of biological invaders?. Trends Ecol. Evol. 14, 135–139 (1999).

    CAS  PubMed  Google Scholar 

  • 24.

    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).

    PubMed  Google Scholar 

  • 25.

    Walther, G. R. et al. Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol. 24, 686–693 (2009).

    PubMed  Google Scholar 

  • 26.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    McClelland, G. T. et al. Climate change leads to increasing population density and impacts of a key island invader. Ecol. Appl. 28, 212–224 (2018).

    PubMed  Google Scholar 

  • 28.

    Courchamp, F. et al. Invasion biology: specific problems and possible solutions. Trends Ecol. Evol. 32, 13–22 (2017).

    PubMed  Google Scholar 

  • 29.

    Jarić, I., Courchamp, F., Gessner, J. & Roberts, D. L. Data mining in conservation research using Latin and vernacular species names. PeerJ 4, e2202. https://doi.org/10.7717/peerj.2202 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Correia, R. A., Jepson, P., Malhado, A. C. M. & Ladle, R. J. Internet scientific name frequency as an indicator of cultural salience of biodiversity. Ecol. Indic. 78, 549–555 (2017).

    Google Scholar 

  • 31.

    Correia, R. A., Jepson, P. R., Malhado, A. C. M. & Ladle, R. J. Familiarity breeds content: assessing bird species popularity with culturomics. PeerJ 4, e1728. https://doi.org/10.7717/peerj.1728 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Miller, J. R. Biodiversity conservation and the extinction of experience. Trends Ecol. Evol. 20, 430–434 (2005).

    PubMed  Google Scholar 

  • 33.

    Davies, T. et al. Popular interest in vertebrates does not reflect extinction risk and is associated with bias in conservation investment. PLoS ONE 13, e0203694. https://doi.org/10.1371/journal.pone.0203694 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    IUCN. The IUCN Red List of Threatened Species. Version 2017-2. https://www.iucnredlist.org (2017).

  • 35.

    Capstick, S., Whitmarsh, L., Poortinga, W., Pidgeon, N. & Upham, P. International trends in public perceptions of climate change over the past quarter century. WIREs Clim. Change 6, 35–61 (2015).

    Google Scholar 

  • 36.

    Vaz, A. S. et al. The progress of interdisciplinarity in invasion science. Ambio 46, 428–442 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    IPBES In Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (Bonn, IPBES Secretariat, 2019).

    Google Scholar 

  • 38.

    Antilla, L. Climate of scepticism: US newspaper coverage of the science of climate change. Glob. Environ. Change 15, 338–352 (2005).

    Google Scholar 

  • 39.

    Russell, J. C. & Blackburn, T. M. The rise of invasive species denialism. Trends Ecol. Evol. 32, 3–6 (2017).

    PubMed  Google Scholar 

  • 40.

    Ricciardi, A. & Ryan, R. The exponential growth of invasive species denialism. Biol. Invasions 20, 549–553 (2018).

    Google Scholar 

  • 41.

    García-Llorente, M., Martín-López, B., González, J. A., Alcorlo, P. & Montes, C. Social perceptions of the impacts and benefits of invasive alien species: implications for management. Biol. Conserv. 141, 2969–2983 (2008).

    Google Scholar 

  • 42.

    Shackleton, R. T. et al. Explaining people’s perceptions of invasive alien species: a conceptual framework. J. Environ. Manage. 229, 10–26 (2019).

    PubMed  Google Scholar 

  • 43.

    Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    CAS  PubMed  Google Scholar 

  • 44.

    Thomas, C. D. Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol. Evol. 26, 216–221 (2011).

    PubMed  Google Scholar 

  • 45.

    Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. Proc. Natl. Acad. Sci. USA 113, 4033–4038 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 47.

    Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ec. 413, 05 (2014).

    Google Scholar 

  • 48.

    Keller, R. P., Geist, J., Jeschke, J. M. & Kühn, I. Invasive species in Europe: ecology, status, and policy. Environ. Sci. Eur. 23, 23 (2011).

    Google Scholar 

  • 49.

    Hulme, P. E. (ed.) Handbook of Alien Species in Europe (Springer, Dordrecht, 2009).

    Google Scholar 

  • 50.

    Bellard, C. & Jeschke, J. M. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 30, 230–232 (2016).

    CAS  PubMed  Google Scholar 

  • 51.

    Bellard, C., Jeschke, J. M., Leroy, B. & Mace, G. M. Insights from modeling studies on how climate change affects invasive alien species geography. Ecol. Evol. 8, 5688–5700 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Spatz, D. R. et al. Globally threatened vertebrates on islands with invasive species. Sci. Adv. 3, e1603080 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Combe, F. J. et al. After the ice age: the impact of post-glacial dispersal on the phylogeography of a small mammal, Muscardinus avellanarius. Front. Ecol. Evol. 4, 72 (2016).

    Google Scholar 

  • 54.

    Spada, G. & Galassi, G. Extent and dynamic evolution of the lost land aquaterra since the Last Glacial Maximum. C. R. Geosci. 349, 151–158 (2017).

    Google Scholar 

  • 55.

    Veitch, C. R. & Clout, M. N. Human dimensions in the management of invasive species in New Zealand. In The Great Reshuffling: Human Dimensions of Invasive Alien Species (ed. McNeely, J. A.) 63–71 (Gland, Cambridge, UK, IUCN, 2001).

    Google Scholar 

  • 56.

    Kidd, L. R., Gregg, E. A., Bekessy, S. A., Robinson, J. A. & Garrard, G. E. Tweeting for their lives: Visibility of threatened species on twitter. J. Nat. Conserv. 46, 106–109 (2018).

    Google Scholar 

  • 57.

    Fernández-Bellon, D. & Kane, A. Natural history films raise species awareness: a big data approach. Conserv. Lett. 13, e12678 (2020).

    PubMed  Google Scholar 

  • 58.

    Clucas, B., McHugh, K. & Caro, T. Flagship species on covers of US conservation and nature magazines. Biodivers. Conserv. 17, 1517–1528 (2008).

    Google Scholar 

  • 59.

    Albert, C., Luque, G. M. & Courchamp, F. The twenty most charismatic species. PLoS ONE 13, e0199149 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Courchamp, F. et al. The paradoxical extinction of the most charismatic animals. PLoS Biol. 16, e2003997 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Martín-Forés, I., Martín-López, B. & Montes, C. Anthropomorphic factors influencing Spanish conservation policies of vertebrates. Int. J. Biodivers. 2013, 142670 (2013).

    Google Scholar 

  • 62.

    Żmihorski, M., Dziarska-Pałac, J., Sparks, T. H. & Tryjanowski, P. Ecological correlates of the popularity of birds and butterflies in Internet information resources. Oikos 122, 183–190 (2013).

    Google Scholar 

  • 63.

    Jarić, I. et al. The role of species charisma in biological invasions. Front. Ecol. Environ. https://doi.org/10.1002/fee.2195 (2020).

    Article  Google Scholar 

  • 64.

    Miralles, A., Raymond, M. & Lecointre, G. Empathy and compassion toward other species decrease with evolutionary divergence time. Sci. Rep. 9, 19555 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Wilson, J. R., Procheş, Ş, Braschler, B., Dixon, E. S. & Richardson, D. M. The (bio)diversity of science reflects the interests of society. Front. Ecol. Environ. 5, 409–414 (2007).

    Google Scholar 

  • 66.

    Larson, B. M. The war of the roses: demilitarizing invasion biology. Front. Ecol. Environ. 3, 495–500 (2005).

    Google Scholar 

  • 67.

    Wallach, A. D., Bekoff, M., Batavia, C., Nelson, M. P. & Ramp, D. Summoning compassion to address the challenges of conservation. Conserv. Biol. 32, 1255–1265 (2018).

    PubMed  Google Scholar 

  • 68.

    Johns, D. & DellaSala, D. A. Caring, killing, euphemism and George Orwell: how language choice undercuts our mission. Biol. Conserv. 211, 174–176 (2017).

    Google Scholar 

  • 69.

    Devictor, V. & Meinard, Y. Empowering biodiversity knowledge. Conserv. Biol. 34, 527–529 (2020).

    PubMed  Google Scholar 

  • 70.

    Trull, N., Böhm, M. & Carr, J. Patterns and biases of climate change threats in the IUCN Red List. Conserv. Biol. 32, 135–147 (2018).

    PubMed  Google Scholar 

  • 71.

    Keith, D. A. et al. Detecting extinction risk from climate change by IUCN Red List criteria. Conserv. Biol. 28, 810–819 (2014).

    PubMed  Google Scholar 

  • 72.

    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221 (2014).

    ADS  Google Scholar 

  • 73.

    Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics. Glob Change Biol. 25, 448–458 (2019).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Progressive nitrogen limitation across the Tibetan alpine permafrost region

    Behavioural responses of white sharks to specific baits during cage diving ecotourism