in

Spotlight on the invasion of a carabid beetle on an oceanic island over a 105-year period

  • 1.

    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435. https://doi.org/10.1038/ncomms14435 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Parker, I. M. et al. Impact: toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19. https://doi.org/10.1023/A:1010034312781 (1999).

    Article  Google Scholar 

  • 3.

    Gurevitch, J. & Padilla, D. K. Are invasive species a major cause of extinctions?. Trends Ecol. Evol. 19, 470–474. https://doi.org/10.1016/j.tree.2004.07.005 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Richardson, D. M., Pyšek, P. & Carlton, J. T. A compendium of essential concepts and terminology in invasion ecology. In Fifty Years of Invasion Ecology: The Legacy of Charles Elton (ed. Richardson, D. M.) 409–420 (Wiley, Oxford, 2011).

    Google Scholar 

  • 5.

    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339. https://doi.org/10.1016/j.tree.2011.03.023 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Chabrerie, O. et al. Biological invasion theories: merging perspectives from population, community, and ecosystem scales. Hal-Inria. https://doi.org/10.20944/preprints201910.0327.v1 (2019).

    Article  Google Scholar 

  • 7.

    Simberloff, D. & Rejmanek, M. Encyclopedia of Biological Invasions (University of California Press, Berkeley, 2011).

    Google Scholar 

  • 8.

    Thuiller, W., Richardson, D. M., Rouget, M., Procheş, Ş & Wilson, J. R. U. Interactions between environment, species traits, and human uses describe patterns of plant invasion. Ecology 87, 1755–1769. https://doi.org/10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Thuiller, W., Gassó, N., Pino, J. & Vilà, M. Ecological niche and species traits: key drivers of regional plant invader assemblages. Biol. Invasions 14, 1963–1980. https://doi.org/10.1007/s10530-012-0206-0 (2012).

    Article  Google Scholar 

  • 10.

    Renault, D., Laparie, M., McCauley, S. J. & Bonte, D. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu. Rev. Entomol. 63, 345–368. https://doi.org/10.1146/annurev-ento-020117-043315 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Alpert, P., Bone, E. & Holzapfel, C. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 3, 52–66. https://doi.org/10.1078/1433-8319-00004 (2000).

    Article  Google Scholar 

  • 12.

    David, P. et al. Impacts of invasive species on food webs: a review of empirical data. In Networks of Invasion: A Synthesis of Concepts. Adv Ecol Res Vol. 56 (eds Bohan, D. A. et al.) 1–60 (Academic Press, Boca Raton, 2017).

    Google Scholar 

  • 13.

    Hui, C. et al. Defining invasiveness and invasibility in ecological networks. Biol. Invasions 18, 971–983. https://doi.org/10.1007/s10530-016-1076-7 (2016).

    Article  Google Scholar 

  • 14.

    Kolar, C. S. & Lodge, D. M. Progress in invasion biology: predicting invaders. Trends Ecol. Evol. 16, 199–204. https://doi.org/10.1016/S0169-5347(01)02101-2 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Jeschke, J. M. & Strayer, D. L. Invasion success of vertebrates in Europe and North America. Proc. Natl. Acad. Sci. USA 102, 7198–7202. https://doi.org/10.1073/pnas.0504835102 (2005).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Liebhold, A., Halverson, J. & Elmes, G. Gypsy moth invasion in North America: a quantitative analysis. J. Biogeogr. 19, 513–520. https://doi.org/10.2307/2845770 (1992).

    Article  Google Scholar 

  • 17.

    Goldstein, J., Park, J., Haran, M., Liebhold, A. & Bjonstad, O. N. Quantifying spatio-temporal variation of invasion spread. Proc. R. Soc. B 286, 20182294 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Costello, C. J. & Solow, A. R. On the pattern of discovery of introduced species. Proc. Natl. Acad. Sci. USA 100, 3321–3323. https://doi.org/10.1073/pnas.0636536100 (2003).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Crooks, J. A. Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12, 316–329. https://doi.org/10.2980/i1195-6860-12-3-316.1 (2005).

    Article  Google Scholar 

  • 20.

    Carey, J. R. The incipient Mediterranean fruit fly population in California: implications for invasion biology. Ecology 77, 1690–1697. https://doi.org/10.2307/2265775 (1996).

    Article  Google Scholar 

  • 21.

    Cavey, J. F., Hoebeke, E., Passoa, S. & Lingafelter, S. W. A new exotic threat to North American hardwood forests: an Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). I. Larval description and diagnosis. Proc. Entomol. Soc. Wash. 100, 373–381 (1998).

    Google Scholar 

  • 22.

    Turgeon, J. J. et al. Density and location of simulated signs of injury affect efficacy of ground surveys for Asian longhorned beetle. Can. Entomol. 142, 80–96 (2010).

    Article  Google Scholar 

  • 23.

    Brown, P. M. J. et al. Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid. Biocontrol 53, 5–21. https://doi.org/10.1007/s10526-007-9132-y (2008).

    Article  Google Scholar 

  • 24.

    Perrard, A., Haxaire, J., Rortais, A. & Villemant, C. Observations on the colony activity of the Asian hornet Vespa velutina Lepeletier 1836 (Hymenoptera: Vespidae: Vespinae) in France. Ann. Soc. Entomol. Fr. 45, 119–127. https://doi.org/10.1080/00379271.2009.10697595 (2009).

    Article  Google Scholar 

  • 25.

    Brown, P. M. J. et al. The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. Biocontrol 56, 623–641. https://doi.org/10.1007/s10526-011-9379-1 (2011).

    Article  Google Scholar 

  • 26.

    Lombaert, E. et al. Bridgehead effect in the worldwide invasion of the biocontrol Harlequin Ladybird. PLoS ONE 5, e9743. https://doi.org/10.1371/journal.pone.0009743 (2010).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Ball-Damerow, J. E. et al. Research applications of primary biodiversity databases in the digital age. PLoS ONE 14(9), e0215794. https://doi.org/10.1371/journal.pone.0215794 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Lustig, A. et al. A modeling framework for the establishment and spread of invasive species in heterogeneous environments. Ecol. Evol. 7, 8338–8348. https://doi.org/10.1002/ece3.2915 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Sofaer, H. R. et al. Development and delivery of species distribution models to inform decision-making. Bioscience 69, 544–557. https://doi.org/10.1093/biosci/biz045 (2019).

    Article  Google Scholar 

  • 30.

    Stevenson, M. D., Rossmo, D. K., Knell, R. K. & Le Comber, S. C. Geographic profiling as a novel spatial tool for targeting the control of invasive species. Ecography 35, 704–715. https://doi.org/10.1111/j.1600-0587.2011.07292.x (2012).

    Article  Google Scholar 

  • 31.

    Lefcheck, J. S. PiecewiseSEM: piecewise structural equation modelling in R for ecology, evolution and systematics. Methods Ecol. Evol. 7, 573–579. https://doi.org/10.1111/2041-210X.12512 (2016).

    Article  Google Scholar 

  • 32.

    Frenot, Y. et al. Biological invasions in the Antarctic: extent, impacts and implications. Biol. Rev. 80, 45–72. https://doi.org/10.1017/S1464793104006542 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Lebouvier, M. et al. The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol. Invasions 13, 1195–1208. https://doi.org/10.1007/s10530-011-9946-5 (2011).

    Article  Google Scholar 

  • 34.

    Greve, M., Mathakutha Rabia Steyn, C. & Chown, S. L. Terrestrial invasions on sub-Antarctic Marion and Prince Edward Islands. Bothalia Afr. Biodivers. Conserv. 47, 1–21. https://doi.org/10.4102/abc.v47i2.2143 (2017).

    Article  Google Scholar 

  • 35.

    Greve, M., von der Meden, C. E. O. & Janion-Scheepers, C. Biological invasions in South Africa’s offshore Sub-Antarctic Territories. In Biological invasions in South Africa. Invading nature—Springer series in invasion ecology Vol. 14 (eds van Wilgen, B. et al.) (Springer, Cham, 2020).

    Google Scholar 

  • 36.

    Hullé, M., Buchard, C., Georges, R. & Vernon, P. Guide d’identification des Invertébrés de Kerguelen et Crozet. 2nde édition (Université de Rennes 1, France, 2018). https://doi.org/10.15454/1.5375302767618145E12.

  • 37.

    Jeannel, R. Croisière du Bougainville aux Iles Australes françaises. Mém MNHN sér A Paris 14, 63–201 (1940).

    Google Scholar 

  • 38.

    Renault, D., Chevrier, M., Laparie, M., Vernon, P. & Lebouvier, M. Characterization of the habitats colonized by the alien ground beetle Merizodus soledadinus at the Kerguelen Islands. Rev Ecol (Terre et Vie) suppt 12, 28–32 (2015).

    Google Scholar 

  • 39.

    Chevrier, M., Vernon, P. & Frenot, Y. Potential effects of two alien insects on a sub-Antarctic wingless fly in the Kerguelen islands. In Antarctic Communities—Species, Structure and Survival (eds Battaglia, B. et al.) 424–431 (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  • 40.

    Reed, E. C. On the Coleoptera Geodephaga of Chile. In Proceedings of the General Meetings for Scientific Business of the Zoological Society of London, 48–70, plate XIII (1874).

  • 41.

    Champion, G. C. The Coleoptera of the Falkland Islands. Ann. Mag. Nat. Hist. 9(1), 167–186 (1918).

    Article  Google Scholar 

  • 42.

    Jeannel, R. Monographie des Trechinae (1). L’Abeille 32, 221–550 (1926).

    Google Scholar 

  • 43.

    Jeannel, R. Les Trechides de la Paléantarctide occidentale. In Biologie de l’Amérique Australe, Etudes sur la Faune du Sol (eds Delamare-Debouteville, C. & Rapoport, E.) 527–655 (Editions du C.N.R.S, Paris, 1962).

    Google Scholar 

  • 44.

    Jeannel, R. Biogéographie des Terres Australes de l’Océan Indien. Rev. Fr. Entomol. 31, 319–417 (1964).

    Google Scholar 

  • 45.

    Moore, D. M. The vascular flora of the Falkland Islands. Br. Antarct. Surv. Sci. Rep. 60, 1–160 (1968).

    Google Scholar 

  • 46.

    Darlington, P. J. Coleoptera: Carabidae of South Georgia. Pac Insects Monogr. 23, 234 (1970).

    Google Scholar 

  • 47.

    Roux, P. & Voisin, F.-F. Notes sur les Carabiques des îles Falkland (Col., Caraboidea). Bull. Soc. Entomol. Fr. 87, 200–204 (1982).

    Google Scholar 

  • 48.

    Block, W. & Somme, L. Low temperature adaptations in beetles from the sub-Antarctic Island of South Georgia. Polar Biol. 2, 109–114 (1983).

    Article  Google Scholar 

  • 49.

    Vogel, M. & Nicolai, V. Invertebrates collected at the old whaling station, Grytviken, South Georgia. Polar Rec. 21, 607–609. https://doi.org/10.1017/S0032247400022051 (1983).

    Article  Google Scholar 

  • 50.

    Tréhen, P. & Voisin, J.-F. Sur la présence de Merizodus soledadinus Guérin à Kerguelen (Coléoptère, Trechidae). L’Entomologiste 40, 53–54 (1984).

    Google Scholar 

  • 51.

    Lewis Smith, R. I. & Prince, P. A. The natural history of Beauchêne Island. Biol. J. Lin. Soc. 24, 233–283. https://doi.org/10.1111/j.1095-8312.1985.tb00374.x (1985).

    Article  Google Scholar 

  • 52.

    Smith, K. G. V. Darwin’s insects. Charles Darwin’s Entomological Notes. Bulletin of the British Museum (Natural History) (historical series), 14 1 (1987).

  • 53.

    Ottesen, P. S. Diel activity patterns of Carabidae, Staphylinidae and Perimylopidae (Coleoptera) at South Georgia, sub-Antarctic. Polar Biol. 10, 515–519. https://doi.org/10.1007/BF00233700 (1990).

    Article  Google Scholar 

  • 54.

    Dreux, P., Galiana, D. & Voisin, J. F. Acclimatation de Merizodus soledadinus Guérin dans l’archipel de Kerguelen (Coleoptera, Trechidae). Bull. Soc. Entomol. Fr. 97, 219–221 (1992).

    Google Scholar 

  • 55.

    Ernsting, G. Observations on life cycle and feeding ecology of two recently introduced predatory beetle species at South Georgia, sub-Antarctic. Polar Biol. 13, 423–428. https://doi.org/10.1007/BF01681985 (1993).

    Article  Google Scholar 

  • 56.

    Ernsting, G., Block, W., MacAlister, H. & Todd, C. The invasion of the carnivorous carabid beetle Trechisibus antarcticus on South Georgia (sub-Antarctic) and its effect on the endemic herbivorous beetle Hydromedion spasutum. Oecologia 103, 34–42 (1995).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Chevrier, M. Introduction de deux espèces d’insectes aux îles Kerguelen: processus de colonisation et exemples d’interactions. Thèse de doctorat, Université de Rennes 1, France (1996).

  • 58.

    Todd, C. M. Respiratory metabolism in two species of carabid beetle from the sub-Antarctic island of South Georgia. Polar Biol. 18, 166–171. https://doi.org/10.1007/s003000050173 (1997).

    Article  Google Scholar 

  • 59.

    Todd, C. M. & Block, W. Responses to desiccation in four Coleopterans from sub-Antarctic South Georgia. J. Insect Physiol. 43, 905–913. https://doi.org/10.1016/S0022-1910(97)00055-3 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Grebennikov, V. V. Larvae of Zolini (Coleoptera: Carabidae): Genera Oopterus Guérin-Méneville and Idacarabus lea. Coleopt. Bull. 53(3), 245–252 (1999).

    Google Scholar 

  • 61.

    Brandjes, G. J., Block, W. & Ernsting, G. Spatial dynamics of two introduced species of carabid beetles on the sub-Antarctic island of South Georgia. Polar Biol. 21, 326–334. https://doi.org/10.1007/s003000050369 (1999).

    Article  Google Scholar 

  • 62.

    Arndt, E. Larvae of the subfamily Trechinae from the Southern Hemisphere (Insecta, Coleoptera, Carabidae). Spixiana 23, 85–91 (2000).

    Google Scholar 

  • 63.

    Casagranda, M. D., Roigt-Juňent, S. & Szumik, C. Endemism at different spatial scales: an example with Carabidae (Coleoptera: Insecta) of austral South America. Rev. Chil. Hist. Nat. 82, 17–42. https://doi.org/10.4067/S0716-078X2009000100002 (2009).

    Article  Google Scholar 

  • 64.

    Papadopoulou, A., Jones, A. G., Hammond, P. M. & Vogler, A. P. DNA taxonomy and phylogeography of beetles of the Falkland Islands (Islas Malvinas). Mol. Phylogenet. Evol. 53, 935–947 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Convey, P., Key, R. S., Key, R. J. D., Belchier, M. & Waller, C. L. Recent range expansion in non-native predatory beetles on sub-Antarctic South Georgia. Polar Biol. 34, 597–602. https://doi.org/10.1007/s00300-010-0909-6 (2011).

    Article  Google Scholar 

  • 66.

    Briot, C. Les frères Bossière : pionniers des Kerguelen. Recueil de l’Association des Amis du Vieux Havre 49, 113–143 (1990).

    Google Scholar 

  • 67.

    Arnaud, P. & Beurois, J. Les Armateurs du Rêve (Editions F. Jambois, Marseille, 1996).

  • 68.

    Delépine, G. Histoires extraordinaires et inconnues dans les mers australes (Editions Ouest-France, Rennes, 2002).

    Google Scholar 

  • 69.

    Hulme, P. E. et al. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J. Appl. Ecol. 45, 403–414. https://doi.org/10.1111/j.1365-2664.2007.01442.x (2008).

    Article  Google Scholar 

  • 70.

    Veldtman, R., Chown, S. L. & McGeoch, M. A. Using scale-area curves to quantify the distribution, abundance and range expansion potential of an invasive species. Divers. Distrib. 16, 159–169. https://doi.org/10.1111/j.1472-4642.2009.00632.x (2010).

    Article  Google Scholar 

  • 71.

    Frenot, Y., Gloaguen, J.-C., Massé, L. & Lebouvier, M. Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam Islands. Biol. Conserv. 101, 33–50. https://doi.org/10.1016/S0006-3207(01)00052-0 (2001).

    Article  Google Scholar 

  • 72.

    Kiritani, K. & Yamamura, K. Exotic insects and their pathways for invasion. In Invasive Species-Vectors and Management Strategies (eds Ruiz, G. M. & Carlton, J. T.) 44–67 (Island Press, Washington, 2003).

    Google Scholar 

  • 73.

    Morimoto, N. et al. Finding indications of lag time, saturation and trading inflow in the emergence record of exotic agricultural insect pests in Japan. Appl. Entomol. Zool. 54, 437–450. https://doi.org/10.1007/s13355-019-00640-2 (2019).

    Article  Google Scholar 

  • 74.

    Liebhold, A. M. & Tobin, P. C. Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Popul. Ecol. 48, 253–262. https://doi.org/10.1007/s10144-006-0014-4 (2006).

    Article  Google Scholar 

  • 75.

    Tobin, P. C., Berec, L. & Liebhold, A. M. Exploiting Allee effects for managing biological invasions. Ecol. Lett. 14, 615–624. https://doi.org/10.1111/j.1461-0248.2011.01614.x (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 76.

    Taylor, C. M. & Hastings, A. Allee effects in biological invasions. Ecol. Lett. 8, 895–908. https://doi.org/10.1111/j.1461-0248.2005.00787.x (2005).

    Article  Google Scholar 

  • 77.

    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).

    Article  Google Scholar 

  • 78.

    Enders, M. et al. A conceptual map of invasion biology: integrating hypotheses into a consensus network. Glob. Ecol. Biogeogr. 29, 978–991 (2020).

    Article  Google Scholar 

  • 79.

    Ouisse, T., Laparie, M., Lebouvier, M. & Renault, D. New insights into the ecology of Merizodus soledadinus, a predatory carabid beetle invading the sub-Antarctic Kerguelen Islands. Polar Biol. 40, 2201–2209. https://doi.org/10.1007/s00300-017-2134-z (2017).

    Article  Google Scholar 

  • 80.

    Ouisse, T. Phenotypic and genetic characterisation of the carabid beetle Merizodus soledadinus along its invasion gradient at the subantarctic Kerguelen Islands. Thesis of the University of Rennes 1. 143p (2016).

  • 81.

    Renault, D. Sea water transport and submersion tolerance as dispersal strategies for the invasive ground beetle Merizodus soledadinus (Carabidae). Polar Biol. 34, 1591–1595. https://doi.org/10.1007/s00300-011-1020-3 (2011).

    Article  Google Scholar 

  • 82.

    Hidalgo, K. et al. Metabolic fingerprinting of the responses to salinity in the invasive ground beetle Merizodus soledadinus at the Kerguelen Islands. J. Insect Physiol. 59, 91–100. https://doi.org/10.1016/j.jinsphys.2012.10.017 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 83.

    Lindenmayer, D. B. & Fischer, J. Tackling the habitat fragmentation panchreston. Trends Ecol. Evol. 22, 127–132. https://doi.org/10.1016/j.tree.2006.11.006 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • 84.

    Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 110316–122612. https://doi.org/10.1146/annurev-ecolsys-110316-022612 (2017).

    Article  Google Scholar 

  • 85.

    Renault, D. A review of the phenotypic traits associated with insect dispersal polymorphism, and experimental designs for sorting out resident and disperser phenotypes. Insects 11, 214 (2020).

    PubMed Central  Article  Google Scholar 

  • 86.

    Sharov, A. A. & Liebhold, A. M. Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecol. Appl. 8, 1170–1179 (1998).

    Article  Google Scholar 

  • 87.

    De la Giroday, H.-M.C., Carrol, A. L. & Aukemar, B. H. Honey-Maire breach of the northern rocky mountain geoclimatic barrier: initiation of range expansion by the mountain pine beetle. J. Biogeogr. 39, 1112–1123 (2012).

    Article  Google Scholar 

  • 88.

    Li, C. et al. Effect of temperature on the occurrence and distribution of Colorado potato beetle (Coleoptera: Chrysomelidae) in China. Environ. Entomol. 43, 511–519 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    Kennedy, T. A. et al. Biodiversity as a barrier to ecological invasion. Nature 417, 636–638 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 90.

    Zhu, R. et al. Penguins significantly increased phosphine formation and phosphorus contribution in maritime Antarctic soils. Sci. Rep. 4, 7055. https://doi.org/10.1038/srep07055 (2015).

    CAS  Article  Google Scholar 

  • 91.

    Ribeiro Nunes, L. J., Meireles, C. I. R., Pinto Gomes, C. J. & Almeida Ribeiro, N. M. C. Propagation model of invasive species: road systems as dispersion facilitators. Res. Ecol. https://doi.org/10.30564/re.v2i1.1054 (2020).

    Article  Google Scholar 

  • 92.

    Leuven, R. S. E. W. et al. The river Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invasions 11, 1989–2008 (2009).

    Article  Google Scholar 

  • 93.

    Liu, X. et al. Risks of biological invasion on the Belt and Road. Curr. Biol. 29, 499–505 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 94.

    Ouisse, T., Hendrickx, F., Lebouvier, M., Bonte, D. & Renault, D. The desiccation sensitivity of an invasive ground beetle as the main driver of its geographical distribution in subpolar islands. J. Insect Physiol. 93, 42–49 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 95.

    Tréhen, P., Vernon, P., Delettre, Y. & Frenot, Y. Organisation et dynamique des peuplements diptérologiques à Kerguelen. Mise en évidence de modifications liées à l’insularité (exemple de l’Ile de Croÿ, Iles Nuageuses). Comité National Français des Recherches Antarctiques 58, 241–253 (1987).

    Google Scholar 

  • 96.

    Kavanaugh, D. H. & Erwin, T. L. Trechus obtusus Erichson (Coleoptera: Carabidae), a European ground beetle, on the Pacific coast of North America: its distribution, introduction, and spread. Pan-Pac Entomol. 61, 170–179 (1985).

    Google Scholar 

  • 97.

    Liebherr, J. K. & Takumi, R. Introduction and distributional expansion of Trechus obtusus (Coleoptera, Carabidae) in Maui, Hawai’i. Pac. Sci. 56, 365–375 (2002).

    Article  Google Scholar 

  • 98.

    Engell Dahl, J. et al. Thermal tolerance patterns of a carabid beetle sampled along invasion and altitudinal gradients at a sub-Antarctic island. J. Therm. Biol. https://doi.org/10.1016/j.jtherbio.2019.102447 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 99.

    Lalouette, L., Williams, C. M., Cottin, M., Sinclair, B. J. & Renault, D. Thermal biology of the alien ground beetle Merizodus soledadinus introduced to the Kerguelen Islands. Polar Biol. 35, 509–517. https://doi.org/10.1007/s00300-011-1096-9 (2012).

    Article  Google Scholar 

  • 100.

    Laparie, M. & Renault, D. Physiological responses to temperature in Merizodus soledadinus (Col., Carabidae), a subpolar carabid beetle invading sub-Antarctic islands. Polar Biol. 39, 35–45. https://doi.org/10.1007/s00300-014-1600-0 (2016).

    Article  Google Scholar 

  • 101.

    Ouisse, T. et al. Does climate change facilitate the expansion of the invasive carabid beetle Merizodus soledadinus in the sub-Antarctic Kerguelen Islands?. Sci. Rep. 10, 1–12 (2020).

    Article  CAS  Google Scholar 

  • 102.

    Chapuis, J. -L., Vernon, P. & Frenot, Y. Fragilité des peuplements insulaires: exemple des îles Kerguelen, archipel subantarctique. In Réactions des êtres vivants aux changements de l’environnement, PIREN, CNRS, 235–248 (1991).

  • 103.

    Chapuis, J.-L., Boussès, P. & Barnaud, G. Alien mammals, impact and management in the French Subantarctic Islands. Biol. Conserv. 67, 97–104. https://doi.org/10.1016/0006-3207(94)90353-0 (1994).

    Article  Google Scholar 

  • 104.

    Pertierra, L. R. et al. Combining correlative and mechanistic niche models with human activity data to elucidate the invasive potential of a sub-Antarctic insect. J. Biogeogr. https://doi.org/10.1111/jbi.13780 (2019).

    Article  Google Scholar 

  • 105.

    Robinson, G. S. Insects of the Falkland Islands: a checklist and bibliography (Henry Ling Ltd., The Dorset Press, Dorchester, 1984).

    Google Scholar 

  • 106.

    Niemelä, J. Habitat distribution of carabid beetles in Tierra Del Fuego, South-America. Entomol. Fenn. 1, 3–16. https://doi.org/10.33338/ef.83348 (1990).

    Article  Google Scholar 

  • 107.

    Enderlein, G. Die Insekten des Antarkto-Archiplata-Gebietes (Feuerland, Falklands-Inseln, Süd-Georgien). Konglica Svenska Vetenskapsakademiens Handlingar 48, 1–170 (1912).

    Google Scholar 

  • 108.

    Johns, P. M. Arthropoda of the subantarctic islands of New Zealand (1) Coleoptera: Carabidae Southern New Zealand, Patagonian, and Falkland Islands insular Carabidae. J. R. Soc. N. Z. 4, 283–302. https://doi.org/10.1080/03036758.1974.10419396 (1974).

    Article  Google Scholar 

  • 109.

    Lalouette, L. Impact de l’activité anthropique et des changements climatiques sur le succès envahissant de Merizodus soledadinus (Coleoptera, Carabidae) introduit aux Iles Kerguelen. Thèse de doctorat, Université de Lyon 1, France (2009).

  • 110.

    Voisin, J. -F., Chapelin-Viscardi, J. -D., Ponel, P., Rapp, M. Les Coléoptères de la province de Kerguelen (îles subantarctiques de l’océan Indien). Faune de France n°99. Fédération française des Sociétés de Sciences naturelles, Paris (2017).

  • 111.

    Vernon, P. Peuplement diptérologique des substrats enrichis en milieu insulaire subantarctique (Iles Crozet). Etude des Sphaeroceridae du genre Anatalanta., Thèse Doctorat 3ème Cycle, Université de Rennes I, France (1981).


  • Source: Ecology - nature.com

    Individual species provide multifaceted contributions to the stability of ecosystems

    Superconductor technology for smaller, sooner fusion