in

Taxonomic identity best explains variation in body nutrient stoichiometry in a diverse marine animal community

  • 1.

    Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst.33, 341–370 (2002).

    Google Scholar 

  • 2.

    Augustine, D. J. & McNaughton, S. J. Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems9, 1242–1256 (2006).

    CAS  Google Scholar 

  • 3.

    Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol.23, 2166–2178 (2017).

    ADS  Google Scholar 

  • 4.

    Sitters, J. et al. The stoichiometry of nutrient release by terrestrial herbivores and its ecosystem consequences. Front. Earth Sci.5, 32 (2017).

    ADS  Google Scholar 

  • 5.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett.10, 1135–1142 (2007).

    PubMed  Google Scholar 

  • 6.

    Evans-White, M. A. & Lamberti, G. A. Stoichiometry of consumer-driven nutrient recycling across nutrient regimes in streams. Ecol. Lett.9, 1186–1197 (2006).

    PubMed  Google Scholar 

  • 7.

    Allgeier, J. E., Yeager, L. A. & Layman, C. A. Consumers regulate nutrient limitation regimes and primary production in seagrass ecosystems. Ecology94, 521–529 (2013).

    PubMed  Google Scholar 

  • 8.

    Atkinson, C. L., Vaughn, C. C., Forshay, K. J. & Cooper, J. T. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics. Ecology94, 1359–1369 (2013).

    PubMed  Google Scholar 

  • 9.

    Deangelis, D. L. et al. Nutrient dynamics and food-web stability. Annu. Rev. Ecol. Syst.20, 71–95 (1989).

    Google Scholar 

  • 10.

    Allgeier, J. E., Wenger, S. J., Schindler, D. E., Rosemond, A. D. & Layman, C. A. Metabolic theory and taxonomic identity predict nutrient cycling in a diverse food web. Proc. Natl. Acad. Sci.112, 2640–2647 (2015).

    Google Scholar 

  • 11.

    Vanni, M. J. & McIntyre, P. B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: A global synthesis. Ecology97, 3460–3471 (2016).

    PubMed  Google Scholar 

  • 12.

    Fritschie, K. J. & Olden, J. D. Estimating the effects of non-native species on nutrient recycling using species-specific and general allometric models. Freshw. Biol. https://doi.org/10.1111/fwb.13092 (2018).

    Article  Google Scholar 

  • 13.

    Woods, M. C. & Perkins, J. J. E. Absorption and storage of phosphorous by larval Manduca sexta. J. Insect Physiol.48, 555–564 (2002).

    PubMed  CAS  Google Scholar 

  • 14.

    Fagan, W. F. & Denno, R. F. Stoichiometry of actual vs. potential predator-prey interactions: Insights into nitrogen limitation for arthropod predators. Ecol. Lett.7, 876–883 (2004).

    Google Scholar 

  • 15.

    Hendrixson, H. A., Sterner, R. W. & Kay, A. D. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology. J. Fish Biol.70, 121–140 (2007).

    Google Scholar 

  • 16.

    Kiørboe, T. Zooplankton body composition. Limnol. Oceanogr.58, 1843–1850 (2013).

    ADS  Google Scholar 

  • 17.

    Lemoine, N. P., Giery, S. T. & Burkepile, D. E. Differing nutritional constraints of consumers across ecosystems. Oecologia174, 1367–1376 (2014).

    ADS  PubMed  Google Scholar 

  • 18.

    Gonzalez, A. L. et al. Ecological mechanisms and phylogeny shape invertebrate stoichiometry: A test using detritus-based communities across Central and South America. Funct. Ecol.32, 2448–2463 (2018).

    Google Scholar 

  • 19.

    Elser, J. J. et al. Nutritional constraints in terrestrial and freshwater food webs. Nature408, 578–580 (2000).

    ADS  PubMed  CAS  Google Scholar 

  • 20.

    Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett.3, 540–550 (2000).

    Google Scholar 

  • 21.

    Cross, W. F., Benstead, J. P., Rosemond, A. D. & Bruce Wallace, J. Consumer-resource stoichiometry in detritus-based streams. Ecol. Lett.6, 721–732 (2003).

    Google Scholar 

  • 22.

    Small, G. E. & Pringle, C. M. Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a Neotropical stream. Oecologia162, 581–590 (2009).

    ADS  Google Scholar 

  • 23.

    Elser, J. J. et al. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett.6, 936–943 (2003).

    Google Scholar 

  • 24.

    Hood, J. M. & Sterner, R. W. Carbon and phosphorus linkages in Daphnia growth are determined by growth rate, not species or diet. Funct. Ecol.28, 1156–1165 (2014).

    Google Scholar 

  • 25.

    Fagan, W. F. et al. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat.160, 784–802 (2002).

    PubMed  Google Scholar 

  • 26.

    El-Sabaawi, R. W. et al. Widespread intraspecific organismal stoichiometry among populations of the Trinidadian guppy. Funct. Ecol.26, 666–676 (2012).

    Google Scholar 

  • 27.

    Paseka, R. E. & Grunberg, R. L. Allometric and trait-based patterns in parasite stoichiometry. Oikos128, 102–112 (2019).

    CAS  Google Scholar 

  • 28.

    Paine, R. T. Food Web Complexity and Species Diversity. Am. Nat.100, 65 (1966).

    Google Scholar 

  • 29.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr.75, 3–35 (2005).

    Google Scholar 

  • 30.

    Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  • 31.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology85, 1771–1789 (2004).

    Google Scholar 

  • 32.

    Davis, J. A. & Boyd, C. E. Concentrations of selected elements and ash in bluegill (Lepomis macrochirus) and certain other freshwater fish. Trans. Am. Fish. Soc.107, 862–867 (1978).

    CAS  Google Scholar 

  • 33.

    Gonzalez, A. L., Miguel Farina, J., Kay, A. D., Pinto, R. & Marquet, P. A. Exploring patterns and mechanisms of interspecific and intraspecific variation in body elemental composition of desert consumers. Oikos120, 1247–1255 (2011).

    Google Scholar 

  • 34.

    Ramírez, A. et al. Functional differences in the allometry of the water, carbon and nitrogen content of gelatinous organisms. J. Plankton Res.37, 989–1000 (2015).

    Google Scholar 

  • 35.

    Sterner, R. W. & George, N. B. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes. Ecology81, 127–140 (2000).

    Google Scholar 

  • 36.

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, Princeton, 2002).

    Google Scholar 

  • 37.

    El-Sabaawi, R. W. et al. Intraspecific variability modulates interspecific variability in animal organismal stoichiometry. Ecol. Evol.4, 1505–1515 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Frost, P. C. et al. Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol. Lett.9, 774–779 (2006).

    PubMed  Google Scholar 

  • 39.

    Sterner, R. W. Modelling interactions of food quality and quantity in homeostatic consumers. Freshw. Biol.38, 473–481 (1997).

    Google Scholar 

  • 40.

    Frost, P. C., Evans-White, M. A., Finkel, Z. V., Jensen, T. C. & Matzek, V. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos109, 18–28 (2004).

    Google Scholar 

  • 41.

    Newman, M. J. H., Paredes, G. A., Sala, E. & Jackson, J. B. C. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett.9, 1216–1227 (2006).

    PubMed  Google Scholar 

  • 42.

    Munro, J. L. Caribbean coral reef fisheries resources. 2, (1983).

  • 43.

    Layman, C. A. What can stable isotope ratios reveal about mangroves as fish habitat?. Bull. Mar. Sci.80, 513–527 (2007).

    Google Scholar 

  • 44.

    Layman, C. A. & Allgeier, J. E. Characterizing trophic ecology of generalist consumers: A case study on the invasive Lionfish Pterois volitans in the Bahamas. Mar. Ecol. Prog. Ser.448, 131–144 (2012).

    ADS  Google Scholar 

  • 45.

    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev.87, 545–562 (2012).

    PubMed  Google Scholar 

  • 46.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology83, 703–718 (2002).

    Google Scholar 

  • 47.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, Berlin, 2002).

    Google Scholar 

  • 48.

    Gelman, A. & Hill, J. Data Analysis Using Regression (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  • 49.

    R Core Development Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2012).

  • 50.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol.4, 133–142 (2013).

    Google Scholar 

  • 51.

    Bates, D. M. lme4: Mixed-effects Modeling with R (Springer, Berlin, 2010).

    Google Scholar 

  • 52.

    Allgeier, J. E., Layman, C. A., Mumby, P. J. & Rosemond, A. D. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems. Glob. Change Biol.20, 2459–2472 (2014).

    ADS  Google Scholar 

  • 53.

    Small, G. E., Pringle, C. M., Pyron, M. & Duff, J. H. Role of the fish Astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient Neotropical streams. Ecology92, 386–397 (2011).

    PubMed  Google Scholar 

  • 54.

    Vanni, M. J., Flecker, A. S., Hood, J. M. & Headworth, J. L. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: Linking species identity and ecosystem processes. Ecol. Lett.5, 285–293 (2002).

    Google Scholar 

  • 55.

    Hood, J. M., Vanni, M. J. & Flecker, A. S. Nutrient recycling by two phosphorus-rich grazing catfish: The potential for phosphorus-limitation of fish growth. Oecologia146, 247–257 (2005).

    ADS  PubMed  Google Scholar 

  • 56.

    El-Sabaawi, R. W., Warbanski, M. L., Rudman, S. M., Hovel, R. & Matthews, B. Investment in boney defensive traits alters organismal stoichiometry and excretion in fish. Oecologia181, 1209–1220 (2016).

    ADS  PubMed  Google Scholar 

  • 57.

    Wiesenborn, W. D. Phosphorus contents in desert riparian spiders and insects vary among taxa and between flight capabilities. Flor. Entomol.96, 424–432 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Assessing the value of battery energy storage in future power grids

    Spatial patterns of microbial communities across surface waters of the Great Barrier Reef