in

A meta-analysis reveals edge effects within marine protected areas

  • 1.

    Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: a regional meta-analysis. Sci. Rep. 7, 8940 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).

    Google Scholar 

  • 5.

    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Hansen, A. J. & Defries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2016).

    Google Scholar 

  • 7.

    Roberts, C. M., Halpern, B., Palumbi, S. R. & Warner, R. R. Designing marine reserve networks. Why small, isolated protected areas are not enough. Conserv. Pract. 2, 10–17 (2001).

    Google Scholar 

  • 8.

    Walters, C. Impacts of dispersal, ecological interactions, and fishing effort dynamics on efficacy of marine protected areas: how large should protected areas be? Bull. Mar. Sci. 66, 745–757 (2000).

    Google Scholar 

  • 9.

    Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).

    Google Scholar 

  • 10.

    Guidetti, P. et al. Large-scale assessment of Mediterranean marine protected areas effects on fish assemblages. PLoS One 9, e91841 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).

    Google Scholar 

  • 12.

    Di Lorenzo, M., Claudet, J. & Guidetti, P. Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. J. Nat. Conserv. 32, 62–66 (2016).

    Google Scholar 

  • 13.

    Harmelin-Vivien, M. et al. Gradients of abundance and biomass across reserve boundaries in six Mediterranean marine protected areas: evidence of fish spillover? Biol. Conserv. 141, 1829–1839 (2008).

    Google Scholar 

  • 14.

    Abesamis, R. A. & Russ, G. R. Density-dependent spillover from a marine reserve: long-term evidence. Ecol. Appl. 15, 1798–1812 (2005).

    Google Scholar 

  • 15.

    Murawski, S. A., Wigley, S. E., Fogarty, M. J., Rago, P. J. & Mountain, D. G. Effort distribution and catch patterns adjacent to temperate MPAs. ICES J. Mar. Sci. 62, 1150–1167 (2005).

    Google Scholar 

  • 16.

    Kellner, J. B., Tetreault, I., Gaines, S. D. & Nisbet, R. M. Fishing the line near marine reserves in single and multispecies fisheries. Ecol. Appl. 17, 1039–1054 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Stelzenmüller, V. et al. Spatial assessment of fishing effort around European marine reserves: implications for successful fisheries management. Mar. Pollut. Bull. 56, 2018–2026 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2010).

    Google Scholar 

  • 19.

    Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).

    Google Scholar 

  • 20.

    Defries, R., Hansen, A., Newton, A. C. & Hansen, M. C. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 15, 19–26 (2005).

    Google Scholar 

  • 21.

    MPAtlas (Marine Conservation Institute, accessed 4 July 2020); http://www.mpatlas.org

  • 22.

    Willis, T. J., Millar, R. B., Babcock, R. C. & Tolimieri, N. Burdens of evidence and the benefits of marine reserves: putting Descartes before des horse? Environ. Conserv. 30, 97–103 (2003).

    Google Scholar 

  • 23.

    Roberts, C. M. et al. Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol. Appl. 13, 215–228 (2003).

    Google Scholar 

  • 24.

    Huntington, B. E., Karnauskas, M., Babcock, E. A. & Lirman, D. Untangling natural seascape variation from marine reserve effects using a landscape approach. PLoS One 5, e12327 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Miller, K. I. & Russ, G. R. Studies of no-take marine reserves: methods for differentiating reserve and habitat effects. Ocean Coast. Manag. 96, 51–60 (2014).

    Google Scholar 

  • 26.

    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–671 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Brill, G. C. & Raemaekers, S. J. P. N. A decade of illegal fishing in Table Mountain National Park (2000–2009): trends in the illicit harvest of abalone Haliotis midae and West Coast rock lobster Jasus lalandii. African. J. Mar. Sci. 35, 491–500 (2013).

    Google Scholar 

  • 28.

    Harasti, D., Davis, T. R., Jordan, A., Erskine, L. & Moltschaniwskyj, N. Illegal recreational fishing causes a decline in a fishery targeted species (snapper: Chrysophrys auratus) within a remote no-take marine protected area. PLoS One 14, e0209926 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Kleiven, P. J. N. et al. Fishing pressure impacts the abundance gradient of European lobsters across the borders of a newly established marine protected area. Proc. R. Soc. B Biol. Sci. 286, 20182455 (2019).

    Google Scholar 

  • 30.

    Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Sarà, G. et al. Effect of boat noise on the behavior of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 331, 243–253 (2007).

    Google Scholar 

  • 32.

    Tran, D. S. C., Langel, K. A., Thomas, M. J. & Blumstein, D. T. Spearfishing-induced behavioral changes of an unharvested species inside and outside a marine protected area. Curr. Zool. 62, 39–44 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Jiao, J., Pilyugin, S. S., Riotte-Lambert, L. & Osenberg, C. W. Habitat-dependent movement rate can determine the efficacy of marine protected areas. Ecology 99, 2485–2495 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Potts, J. R., Hillen, T. & Lewis, M. A. The ‘edge effect’ phenomenon: deriving population abundance patterns from individual animal movement decisions. Theor. Ecol. 9, 233–247 (2016).

    Google Scholar 

  • 35.

    Gerber, L. R. et al. Population models for marine reserve design: a retrospective and prospective synthesis. Ecol. Appl. 13, 47–64 (2003).

    Google Scholar 

  • 36.

    Malvadkar, U. & Hastings, A.Persistence of mobile species in marine protected areas. Fish. Res. 91, 69–78 (2008).

    Google Scholar 

  • 37.

    Di Lorenzo, M., Guidetti, P., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: a meta-analytical approach. Fish Fish. 21, 906–915 (2020).

    Google Scholar 

  • 38.

    Goñi, R., Quetglas, A. & Reñones, O. Spillover of spiny lobsters Palinurus elephas from a marine reserve to an adjoining fishery. Mar. Ecol. Prog. Ser. 308, 207–219 (2006).

    Google Scholar 

  • 39.

    Stamoulis, K. A. & Friedlander, A. M. A seascape approach to investigating fish spillover across a marine protected area boundary in Hawai’i. Fish. Res. 144, 2–14 (2013).

    Google Scholar 

  • 40.

    Protected Planet: the World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed July 2020); http://www.protectedplanet.net

  • 41.

    Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS One 8, e81847 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013).

    Google Scholar 

  • 43.

    Froese, R. & Pauly, D. (eds). FishBase (accessed May 2020); http://www.fishbase.org

  • 44.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 

  • 45.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).

  • 46.

    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    R Core Team. R: a language and environment for statistical computing. v.3.6.1 (2019).

  • 48.

    QGIS Geographic Information System. Open Source Geospatial Foundation Project (QGIS Development Team, 2020); http://qgis.osgeo.org

  • 49.

    Harmelin-Vivien, M. et al. Species richness, abundance and biomass data for assessing fish spillover from Mediterranean marine protected areas. SEANOE https://doi.org/10.17882/74396 (2020).


  • Source: Ecology - nature.com

    Microbiome diversity and host immune functions influence survivorship of sponge holobionts under future ocean conditions

    Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators