Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).
Google Scholar
Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).
Google Scholar
Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: a regional meta-analysis. Sci. Rep. 7, 8940 (2017).
Google Scholar
Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).
Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).
Google Scholar
Hansen, A. J. & Defries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2016).
Roberts, C. M., Halpern, B., Palumbi, S. R. & Warner, R. R. Designing marine reserve networks. Why small, isolated protected areas are not enough. Conserv. Pract. 2, 10–17 (2001).
Walters, C. Impacts of dispersal, ecological interactions, and fishing effort dynamics on efficacy of marine protected areas: how large should protected areas be? Bull. Mar. Sci. 66, 745–757 (2000).
Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).
Guidetti, P. et al. Large-scale assessment of Mediterranean marine protected areas effects on fish assemblages. PLoS One 9, e91841 (2014).
Google Scholar
Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).
Di Lorenzo, M., Claudet, J. & Guidetti, P. Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. J. Nat. Conserv. 32, 62–66 (2016).
Harmelin-Vivien, M. et al. Gradients of abundance and biomass across reserve boundaries in six Mediterranean marine protected areas: evidence of fish spillover? Biol. Conserv. 141, 1829–1839 (2008).
Abesamis, R. A. & Russ, G. R. Density-dependent spillover from a marine reserve: long-term evidence. Ecol. Appl. 15, 1798–1812 (2005).
Murawski, S. A., Wigley, S. E., Fogarty, M. J., Rago, P. J. & Mountain, D. G. Effort distribution and catch patterns adjacent to temperate MPAs. ICES J. Mar. Sci. 62, 1150–1167 (2005).
Kellner, J. B., Tetreault, I., Gaines, S. D. & Nisbet, R. M. Fishing the line near marine reserves in single and multispecies fisheries. Ecol. Appl. 17, 1039–1054 (2007).
Google Scholar
Stelzenmüller, V. et al. Spatial assessment of fishing effort around European marine reserves: implications for successful fisheries management. Mar. Pollut. Bull. 56, 2018–2026 (2008).
Google Scholar
Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2010).
Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).
Defries, R., Hansen, A., Newton, A. C. & Hansen, M. C. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 15, 19–26 (2005).
MPAtlas (Marine Conservation Institute, accessed 4 July 2020); http://www.mpatlas.org
Willis, T. J., Millar, R. B., Babcock, R. C. & Tolimieri, N. Burdens of evidence and the benefits of marine reserves: putting Descartes before des horse? Environ. Conserv. 30, 97–103 (2003).
Roberts, C. M. et al. Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol. Appl. 13, 215–228 (2003).
Huntington, B. E., Karnauskas, M., Babcock, E. A. & Lirman, D. Untangling natural seascape variation from marine reserve effects using a landscape approach. PLoS One 5, e12327 (2010).
Google Scholar
Miller, K. I. & Russ, G. R. Studies of no-take marine reserves: methods for differentiating reserve and habitat effects. Ocean Coast. Manag. 96, 51–60 (2014).
Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–671 (2017).
Google Scholar
Brill, G. C. & Raemaekers, S. J. P. N. A decade of illegal fishing in Table Mountain National Park (2000–2009): trends in the illicit harvest of abalone Haliotis midae and West Coast rock lobster Jasus lalandii. African. J. Mar. Sci. 35, 491–500 (2013).
Harasti, D., Davis, T. R., Jordan, A., Erskine, L. & Moltschaniwskyj, N. Illegal recreational fishing causes a decline in a fishery targeted species (snapper: Chrysophrys auratus) within a remote no-take marine protected area. PLoS One 14, e0209926 (2019).
Google Scholar
Kleiven, P. J. N. et al. Fishing pressure impacts the abundance gradient of European lobsters across the borders of a newly established marine protected area. Proc. R. Soc. B Biol. Sci. 286, 20182455 (2019).
Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544 (2016).
Google Scholar
Sarà, G. et al. Effect of boat noise on the behavior of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 331, 243–253 (2007).
Tran, D. S. C., Langel, K. A., Thomas, M. J. & Blumstein, D. T. Spearfishing-induced behavioral changes of an unharvested species inside and outside a marine protected area. Curr. Zool. 62, 39–44 (2016).
Google Scholar
Jiao, J., Pilyugin, S. S., Riotte-Lambert, L. & Osenberg, C. W. Habitat-dependent movement rate can determine the efficacy of marine protected areas. Ecology 99, 2485–2495 (2018).
Google Scholar
Potts, J. R., Hillen, T. & Lewis, M. A. The ‘edge effect’ phenomenon: deriving population abundance patterns from individual animal movement decisions. Theor. Ecol. 9, 233–247 (2016).
Gerber, L. R. et al. Population models for marine reserve design: a retrospective and prospective synthesis. Ecol. Appl. 13, 47–64 (2003).
Malvadkar, U. & Hastings, A.Persistence of mobile species in marine protected areas. Fish. Res. 91, 69–78 (2008).
Di Lorenzo, M., Guidetti, P., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: a meta-analytical approach. Fish Fish. 21, 906–915 (2020).
Goñi, R., Quetglas, A. & Reñones, O. Spillover of spiny lobsters Palinurus elephas from a marine reserve to an adjoining fishery. Mar. Ecol. Prog. Ser. 308, 207–219 (2006).
Stamoulis, K. A. & Friedlander, A. M. A seascape approach to investigating fish spillover across a marine protected area boundary in Hawai’i. Fish. Res. 144, 2–14 (2013).
Protected Planet: the World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed July 2020); http://www.protectedplanet.net
Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS One 8, e81847 (2013).
Google Scholar
Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013).
Froese, R. & Pauly, D. (eds). FishBase (accessed May 2020); http://www.fishbase.org
Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).
Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).
Google Scholar
R Core Team. R: a language and environment for statistical computing. v.3.6.1 (2019).
QGIS Geographic Information System. Open Source Geospatial Foundation Project (QGIS Development Team, 2020); http://qgis.osgeo.org
Harmelin-Vivien, M. et al. Species richness, abundance and biomass data for assessing fish spillover from Mediterranean marine protected areas. SEANOE https://doi.org/10.17882/74396 (2020).
Source: Ecology - nature.com