in

A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)

  • 1.

    Millennium Ecosystem Assessment. Ecosystems and human well-being: Biodiversity synthesis (World Resources Institute, Washington, DC, 2005). http://www.millenniumassessment.org/documents/document.354.aspx.pdf (accessed 22 April 2020).

  • 2.

    Willis, K. & Birks, H. What is natural? The need for a long-term perspective. Science 314(5803), 1261–1266. https://doi.org/10.1126/science.1122667 (2006).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Birks, H. J. B. et al. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol. 228, 1–25. https://doi.org/10.1016/j.revpalbo.2015.12.011 (2016).

    Article  Google Scholar 

  • 4.

    Li, K., Liao, M., Ni, J., Liu, X. & Wang, Y. Treeline composition and biodiversity change on the southeastern Tibetan Plateau during the past millennium, inferred from a high-resolution alpine pollen record. Quat. Sci. Rev. 206, 44–55. https://doi.org/10.1016/j.quascirev.2018.12.029 (2019).

    ADS  Article  Google Scholar 

  • 5.

    Bálint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957. https://doi.org/10.1016/j.tree.2018.09.003 (2018).

    Article  PubMed  Google Scholar 

  • 6.

    Garlapati, D., Charankumar, B., Ramu, K., Madeswaran, P. & Ramana Murthy, M. V. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev. Environ. Sci. Biotechnol. 18, 389–411. https://doi.org/10.1007/s11157-019-09501-4 (2019).

    CAS  Article  Google Scholar 

  • 7.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).

    CAS  Article  Google Scholar 

  • 8.

    Kress, W. J. & Erickson, D. L. DNA barcodes: Genes, genomics, and bioinformatics. Proc. Natl. Acad. Sci. USA 105, 2761–2762. https://doi.org/10.1073/pnas.0800476105 (2008).

    ADS  Article  PubMed  Google Scholar 

  • 9.

    CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 106, 12794–12797. https://doi.org/10.1073/pnas.0905845106 (2009).

    Article  Google Scholar 

  • 10.

    China Plant BOL Group. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108, 19641–19646. https://doi.org/10.1073/pnas.1104551108 (2011).

    ADS  Article  Google Scholar 

  • 11.

    Li, X. W. et al. Plant DNA barcoding: From gene to genome. Biol. Rev. Camb. Philos. 90, 157–166. https://doi.org/10.1111/brv.12104 (2015).

    Article  Google Scholar 

  • 12.

    Fior, S. et al. Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions. New Phytol. 198, 579–592. https://doi.org/10.1111/nph.12163 (2013).

    Article  PubMed  Google Scholar 

  • 13.

    Staats, M. et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 408, 4615–4630. https://doi.org/10.1007/s00216-016-9595-8 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14. https://doi.org/10.1093/nar/gkl938 (2007).

    CAS  Article  Google Scholar 

  • 15.

    Kraaijeveld, K. et al. Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Mol. Ecol. Resour. 15, 8–16. https://doi.org/10.1111/1755-0998.12288 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Leontidou, K. et al. DNA metabarcoding of airborne pollen: New protocols for improved taxonomic identification of environmental samples. Aerobiologia 34, 63–74. https://doi.org/10.1007/s10453-017-9497-z (2018).

    Article  Google Scholar 

  • 17.

    Parducci, L. et al. Ancient plant DNA in lake sediments. New Phytol. 214, 924–942 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Giguet-Covex, C. et al. New insights on lake sediment DNA from the catchment: Importance of taphonomic and analytical issues on the record quality. Sci. Rep. 9, 1–21 (2019).

    CAS  Article  Google Scholar 

  • 19.

    Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLoS ONE 13, 1–19. https://doi.org/10.1371/journal.pone.0205575 (2018).

    CAS  Article  Google Scholar 

  • 20.

    Yoccoz, N. G. et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21, 3647–3655 (2012).

    CAS  Article  Google Scholar 

  • 21.

    Parducci, L. et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00189 (2019).

    Article  Google Scholar 

  • 22.

    Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, 1–23. https://doi.org/10.1371/journal.pone.0195403 (2018).

    CAS  Article  Google Scholar 

  • 23.

    Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317, 111–114. https://doi.org/10.1126/science.1141758 (2007).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Willerslev, E. et al. Diverse plant and animal genetic records from holocene and pleistocene sediments. Science 300, 791–795 (2003).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51. https://doi.org/10.1038/nature12921 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 26.

    Zimmermann, H. et al. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). Biogeosciences 14, 575–596. https://doi.org/10.5194/bg-14-575-2017 (2017).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Alaeddini, R. Forensic implications of PCR inhibition—A review. Forensic Sci. Int. Genet. 6, 297–305. https://doi.org/10.1016/j.fsigen.2011.08.006 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Haeberli, W. & Alean, J. Temperature and accumulation of high altitude firn in the alps. Ann. Glaciol. 6, 161–163. https://doi.org/10.3189/1985AoG6-1-161-163 (1985).

    ADS  Article  Google Scholar 

  • 29.

    Bennett, K. D. & Buck, C. E. Interpretation of lake sediment accumulation rates. Holocene 26, 1092–1102. https://doi.org/10.1177/0959683616632880 (2016).

    ADS  Article  Google Scholar 

  • 30.

    Festi, D. et al. A novel pollen-based method to detect seasonality in ice cores: A case study from the Ortles glacier, South Tyrol, Italy. J. Glaciol. 61, 815–824. https://doi.org/10.3189/2015JoG14J236 (2015).

    ADS  Article  Google Scholar 

  • 31.

    Nakazawa, F. Application of pollen analysis to dating of ice cores from lower-latitude glaciers. J. Geophys. Res. 109, 168–170. https://doi.org/10.1029/2004JF000125 (2004).

    Article  Google Scholar 

  • 32.

    Nakazawa, F. et al. Dating of seasonal snow/firn accumulation layers using pollen analysis. J. Glaciol. 51, 483–490. https://doi.org/10.3189/172756505781829179 (2005).

    ADS  Article  Google Scholar 

  • 33.

    Nakazawa, F. et al. Establishing the timing of chemical deposition events on Belukha Glacier, Altai Mountains, Russia, using Pollen analysis. Arctic Antarct. Alp. Res. 43, 66–72. https://doi.org/10.1657/1938-4246-43.1.66 (2011).

    Article  Google Scholar 

  • 34.

    Nakazawa, F., Konya, K., Kadota, T. & Ohata, T. Reconstruction of the depositional environment upstream of Potanin Glacier, Mongolian Altai, from pollen analysis. Environ. Res. Lett. 7, 035402. https://doi.org/10.1088/1748-9326/7/3/035402 (2012).

    ADS  Article  Google Scholar 

  • 35.

    Santibañez, P. et al. Glacier mass balance interpreted from biological analysis of firn cores in the Chilean lake district. J. Glaciol. 54, 452–462. https://doi.org/10.3189/002214308785837101 (2008).

    ADS  Article  Google Scholar 

  • 36.

    Uetake, J. et al. Biological ice-core analysis of Sofiyskiy glacier in the Russian Altai. Ann. Glaciol. 43, 70–78. https://doi.org/10.3189/172756406781811925 (2006).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Andreev, A. A., Nikolaev, V. I., Boi’sheiyanov, D. Y. & Petrov, V. N. Pollen and isotope investigations of an ice core from Vavilov ice cap, October revolution island, Severnaya Zemlya archipelago, Russia. Geogr. Phys. Quat. 51, 379–389. https://doi.org/10.7202/033137ar (1997).

    Article  Google Scholar 

  • 38.

    Liu, K. B., Reese, C. A. & Thompson, L. G. A potential pollen proxy for ENSO derived from the Sajama ice core. Geophys. Res. Lett. 34, 1–5. https://doi.org/10.1029/2006GL029018 (2007).

    Article  Google Scholar 

  • 39.

    Reese, C. A., Liu, K. B. & Thompson, L. G. An ice-core pollen record showing vegetation response to Late-glacial and Holocene climate changes at Nevado Sajama, Bolivia. Ann. Glaciol. 54, 183–190. https://doi.org/10.3189/2013AoG63A375 (2013).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Papina, T. et al. Biological proxies recorded in a Belukha ice core, Russian Altai. Clim. Past 9, 2399–2411. https://doi.org/10.5194/cp-9-2399-2013 (2013).

    Article  Google Scholar 

  • 41.

    Winkler, S. et al. An introduction to mountain glaciers as climate indicators with spatial and temporal diversity. Erdkunde 64, 97–118. https://doi.org/10.3112/erdkunde.2010.02.01 (2010).

    Article  Google Scholar 

  • 42.

    Citterio, M. et al. The fluctuations of Italian glaciers during the last century: A contribution to knowledge about alpine glacier changes. Geogr. Ann. Ser. A Phys. Geogr. 89, 167–184. https://doi.org/10.1111/j.1468-0459.2007.00316.x (2007).

    Article  Google Scholar 

  • 43.

    Knoll, C. & Kerschner, H. A glacier inventory for South Tyrol, Italy, based on airborne laser-scanner data. Ann. Glaciol. 50, 46–52. https://doi.org/10.3189/172756410790595903 (2009).

    ADS  Article  Google Scholar 

  • 44.

    Diolaiuti, G., Bocchiola, D., D’agata, C. & Smiraglia, C. Evidence of climate change impact upon glaciers’ recession within the Italian Alps: The case of Lombardy glaciers. Theor. Appl. Climatol. 109, 429–445. https://doi.org/10.1007/s00704-012-0589-y (2012).

    ADS  Article  Google Scholar 

  • 45.

    IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Core Writing Team, R.K. Pachauri and L.A. Meyer) 151 (IPCC, Geneva, 2014).

  • 46.

    Maggi, V. et al. Variability of anthropogenic and natural compounds in high altitude-high accumulation alpine glaciers. Hydrobiologia 562, 43–56. https://doi.org/10.1007/s10750-005-1804-y (2006).

    CAS  Article  Google Scholar 

  • 47.

    Gabrielli, P. et al. Age of the Mt. Ortles ice cores, the Tyrolean Iceman and glaciation of the highest summit of South Tyrol since the Northern Hemisphere Climatic Optimum. Cryosphere 10, 2779–2797. https://doi.org/10.5194/tc-10-2779-2016 (2016).

    ADS  Article  Google Scholar 

  • 48.

    Bohleber, P. et al. Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium. Clim. Past 14, 21–37. https://doi.org/10.5194/cp-14-21-2018 (2018).

    Article  Google Scholar 

  • 49.

    Rizzi, C., Finizio, A., Maggi, V. & Villa, S. Spatial–temporal analysis and risk characterisation of pesticides in Alpine glacial streams. Environ. Pollut. 248, 659–666. https://doi.org/10.1016/j.envpol.2019.02.067 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Garzonio, R. et al. Mapping the suitability for ice-core drilling of glaciers in the European Alps and the Asian High Mountains. J. Glaciol. 64, 12–26. https://doi.org/10.1017/jog.2017.75 (2018).

    ADS  Article  Google Scholar 

  • 51.

    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59. https://doi.org/10.1038/nmeth.2276 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 52.

    Olds, B. P. et al. Estimating species richness using environmental DNA. Ecol. Evol. 6, 4214–4226. https://doi.org/10.1002/ece3.2186 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 53.

    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895. https://doi.org/10.1111/mec.14350 (2017).

    Article  PubMed  Google Scholar 

  • 54.

    Soons, M. B. & Ozinga, W. A. How important is long-distance seed dispersal for the regional survival of plant species?. Divers. Distrib. 11, 165–172. https://doi.org/10.1111/j.1366-9516.2005.00148.x (2005).

    Article  Google Scholar 

  • 55.

    Lyscov, V. N. & Moshkovsky, Y. S. DNA cryolysis. Biochim. Biophys. Acta 190, 101–110 (1969).

    CAS  Article  Google Scholar 

  • 56.

    Pietramellara, G. et al. Extracellular DNA in soil and sediment: Fate and ecological relevance. Biol. Fertil. Soils 45, 219–235 (2009).

    CAS  Article  Google Scholar 

  • 57.

    Lindahl, T. & Nyberg, B. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610–3618 (1972).

    CAS  Article  Google Scholar 

  • 58.

    Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).

    Article  Google Scholar 

  • 59.

    Bortenschlager, S. Aspects of pollen morphology in the Cupressaceae. Grana 29, 129–137 (1990).

    Article  Google Scholar 

  • 60.

    Kurmann, M. H. Pollen morphology and ultrastructure in the Cupressaceae. Acta Bot. Gall. 141, 141–147 (1994).

    Article  Google Scholar 

  • 61.

    Chichiriccò, G. & Pacini, E. Cupressus arizonica pollen wall zonation and in vitro hydration. Plant Syst. Evol. 270, 231–242 (2008).

    Article  Google Scholar 

  • 62.

    Moran, T., Marshall, S. J. & Sharp, M. J. Isotope thermometry in melt-affected ice cores. J. Geophys. Res. Earth Surf. 116, 1–10. https://doi.org/10.1029/2010JF001738 (2011).

    CAS  Article  Google Scholar 

  • 63.

    Baroni, C., Armiraglio, S., Gentili, R. & Carton, A. Landform-vegetation units for investigating the dynamics and geomorphologic evolution of alpine composite debris cones (Valle dell’Avio, Adamello Group, Italy). Geomorphology 84, 59–79 (2007).

    ADS  Article  Google Scholar 

  • 64.

    Coissac, E., Riaz, T. & Puillandre, N. Bioinformatic challenges for DNA metabarcoding of plants and animals. Mol. Ecol. 21, 1834–1847. https://doi.org/10.1111/j.1365-294X.2012.05550.x (2012).

    CAS  Article  PubMed  Google Scholar 

  • 65.

    Celesti-Grapow, L. et al. (eds) Flora vascolare alloctona e invasiva delle regioni d’Italia (Casa Editrice Università La Sapienza, Roma, 2010).

    Google Scholar 

  • 66.

    Wu, P.-C., Su, H.-J., Lung, S.-C.C., Chen, M.-J. & Lin, W.-P. Pollen of Broussonetia papyrifera: An emerging aeroallergen associated with allergic illness in Taiwan. Sci. Total Environ. 657, 804–810. https://doi.org/10.1016/j.scitotenv.2018.11.324 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 67.

    Kelly, R. P. et al. Genetic and manual survey methods yield different and complementary views of an ecosystem. Front. Mar. Sci. 3, 1–11. https://doi.org/10.3389/fmars.2016.00283 (2017).

    Article  Google Scholar 

  • 68.

    Baksay, S. et al. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. 10, 4202. https://doi.org/10.1038/s41598-020-61198-6 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 69.

    Picotti, S., Francese, R., Giorgi, M., Pettenati, F. & Carcione, J. M. Estimation of glacier thicknesses and basal properties using the horizontal-to-vertical component spectral ratio (HVSR) technique from passive seismic data. J. Glaciol. 63, 229–248. https://doi.org/10.1017/jog.2016.135 (2017).

    ADS  Article  Google Scholar 

  • 70.

    Smiraglia, C. et al. The evolution of the Italian glaciers from the previous data base to the new Italian inventory. Preliminary considerations and results. Geogr. Fis. e Din. Quat. 38, 79–87. https://doi.org/10.4461/GFDQ.2015.38.08 (2015).

    Article  Google Scholar 

  • 71.

    Comitato Glaciologico Italiano & Consiglio Nazionale delle Ricerche. Catasto dei ghiacciai italiani. Anno geofisico 1957–1958. Volume III—Ghiacciai della Lombardia e dell’Ortles-Cevedale. (Comitato Glaciologico Italiano, Torino, 1961).

  • 72.

    Marson, L. Sui ghiacciai dell’Adamello – Presanella (alto bacino del Sarca – Mincio). Boll. Soc. Geogr. It. 7, 546–568 (1906).

    Google Scholar 

  • 73.

    Servizio Glaciologico Lombardo. Ghiacciai in Lombardia (Edizioni Bolis, Bergamo, 1992).

    Google Scholar 

  • 74.

    Payer, J. Originalkarte der Adamello-Presanella Alpen, scala di 1:56.000. In Pajer J. – Die Adamello-Presanella Alpen nach den Forschungen und Aufnahmen, Petermanns Geogr. Mitt. Erganzungs-Hefte, 11 (17) (Gotha, 1865).

  • 75.

    Bombarda, R. Il cuore Bianco. Guida ai ghiacciai del Trentino (Edizioni Arca, 1996).

  • 76.

    Baroni, C., Carton, A. & Casarotto, C. I ghiacciai dell’Adamello. In: Itinerari Glaciologici sulle montagne italiane (ed. Comitato Glaciologico Italiano) Vol. 3 (Società Geologica Italiana, Roma, 2017).

  • 77.

    Bertoni, E. & Casarotto, C. Estensione dei ghiacciai trentini dalla fine della Piccola Età glaciale a oggi. Rilevamento sul terreno, digitalizzazione GIS e analisi. (2015). Progetto finanziato dal Servizio sviluppo sostenibile e aree protette della PAT (rif. prot. n. P001/0640691/29-2014-16 dd. 2/12/2014) (accessed on 27 April 2020). http://www.climatrentino.it/binary/pat_climaticamente/osservatorio_trentino_clima/2014_Estensione_dei_ghiacciai_dalla_fine_della_Piccola_Et_Glaciale_a_oggi_MUSE_.1462456788.pdf.

  • 78.

    Abeni, F. et al. Hydrogen and oxygen stable isotope fractionation in body fluid compartments of dairy cattle according to season, farm, breed, and reproductive stage. PLoS ONE 10(5), e0127391. https://doi.org/10.1371/journal.pone.0127391 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 79.

    Bocchiola, D., Bombelli, G. M., Camin, F. & Ossi, P. M. Field study of mass balance, and hydrology of the West Khangri Nup Glacier (Khumbu, Everest). Water 12(2), 433. https://doi.org/10.3390/w12020433 (2020).

    Article  Google Scholar 

  • 80.

    Erdtman, G. The acetolysis method, A revised description. Svensk Bot. Tidskr. 54, 561–569 (1960).

    Google Scholar 

  • 81.

    Faegri, K. & Iversen, J. Textbook of Pollen Analysis (Wiley, London, 1989).

    Google Scholar 

  • 82.

    Bucher, E., Kofler, V., Vorwohl, G. & Zieger, E. Lo spettro pollinico dei mieli dell’Alto Adige (Laboratorio Biologico, Agenzia Provinciale per l’Ambiente, Laives, Bolzano. 2004).

  • 83.

    Albanese, D. et al. MICCA: Aa complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92