in

Ammonia-oxidizing archaea have similar power requirements in diverse marine oxic sediments

  • 1.

    Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA. 2012;109:16213–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol. 2014;352:409–25.

    CAS 
    Article 

    Google Scholar 

  • 3.

    D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, et al. Distributions of microbial activities in deep subseafloor sediments. Science 2004;306:2216–21.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Røy H, Kallmeyer J, Adhikari RR, Pockalny R, Jørgensen BB, D’Hondt S. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science. 2012;336:922–5.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 5.

    D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T, et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci. 2015;8:299–304.

    Article 
    CAS 

    Google Scholar 

  • 6.

    Jørgensen BB, Marshall IPG. Slow microbial life in the seabed. Annu Rev Mar Sci. 2016;8:311–32.

    Article 

    Google Scholar 

  • 7.

    Danovaro R, Dell’Anno A, Corinaldesi C, Rastelli E, Cavicchioli R, Krupovic M, et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv. 2016;2:e1600492.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Engelhardt T, Kallmeyer J, Cypionka H, Engelen B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 2014;8:1503–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Engelhardt T, Orsi WD, Jørgensen BB. Viral activities and life cycles in deep subseafloor sediments. Environ Microbiol Rep. 2015;7:868–73.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    LaRowe DE, Amend JP. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci. 2015;315:167–203.

    CAS 
    Article 

    Google Scholar 

  • 11.

    LaRowe DE, Amend JP. Power limits for microbial life. Front Microbiol. 2015;6:718.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Hoehler TM, Jørgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Zhao R, Mogollón JM, Abby SS, Schleper C, Biddle JF, Roerdink DL, et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci USA 2020;117:32617–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Bradley J, Arndt S, Amend J, Burwicz E, Dale AW, Egger M, et al. Widespread energy limitation to life in global subseafloor sediments. Sci Adv 2020;6:eaba0697.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Bradley JA, Amend JP, LaRowe DE. Survival of the fewest: Microbial dormancy and maintenance in marine sediments through deep time. Geobiology 2019;17:43–59.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 2018;3:e00055–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Durbin AM, Teske A. Microbial diversity and stratification of south pacific abyssal marine sediments. Environ Microbiol. 2011;13:3219–34.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Tully BJ, Heidelberg JF. Potential mechanisms for microbial energy acquisition in oxic deep-sea sediments. Appl Environ Microbiol. 2016;82:4232–43.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Vuillemin A, Wankel SD, Coskun ÖK, Magritsch T, Vargas S, Estes ER, et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv 2019;5:eaaw4108.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020;14:740–56.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Hoshino T, Doi H, Uramoto G-I, Wörmer L, Adhikari RR, Xiao N, et al. Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci USA 2020;117:27587–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Zhao R, Hannisdal B, Mogollon JM, Jørgensen SL. Nitrifier abundance and diversity peak at deep redox transition zones. Sci Rep. 2019;9:8633.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Jensen K, Sloth NP, Risgaardpetersen N, Rysgaard S, Revsbech NP. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl Environ Microbiol. 1994;60:2094–100.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Middelburg JJ, Soetaert K, Herman PMJ, Heip CHR. Denitrification in marine sediments: a model study. Glob Biogeochemical Cycles. 1996;10:661–73.

    CAS 
    Article 

    Google Scholar 

  • 26.

    Devol AH. Denitrification, anammox, and n2 production in marine sediments. Annu Rev Mar Sci. 2015;7:403–23.

    Article 

    Google Scholar 

  • 27.

    Wankel SD, Germanovich LN, Lilley MD, Genc G, DiPerna CJ, Bradley AS, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nat Geosci. 2011;4:461–8.

    CAS 
    Article 

    Google Scholar 

  • 28.

    Middelburg JJ. Chemoautotrophy in the ocean. Geophys Res Lett. 2011;38:L24604.

    Article 
    CAS 

    Google Scholar 

  • 29.

    Meador TB, Schoffelen N, Ferdelman TG, Rebello O, Khachikyan A, Könneke M. Carbon recycling efficiency and phosphate turnover by marine nitrifying archaea. Sci Adv 2020;6:eaba1799.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M. et al. Proteomics and comparative genomics of nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–E46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H et al. Genomes of thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. ISME J. 2021. https://doi.org/10.1038/s41396-021-00962-6.

  • 32.

    Boetius A, Ferdelman T, Lochte K. Bacterial activity in sediments of the deep Arabian sea in relation to vertical flux. Deep-Sea Res Part II. 2000;47:2835–75.

    Article 

    Google Scholar 

  • 33.

    Grandel S, Rickert D, Schluter M, Wallmann K. Pore-water distribution and quantification of diffusive benthic fluxes of silicic acid, nitrate and phosphate in surface sediments of the deep arabian sea. Deep-Sea Res Part II. 2000;47:2707–34.

    CAS 
    Article 

    Google Scholar 

  • 34.

    Orcutt BN, Wheat CG, Rouxel O, Hulme S, Edwards KJ, Bach W. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. Nat Commun. 2013;4:2539.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 35.

    Ziebis W, McManus J, Ferdelman T, Schmidt-Schierhorn F, Bach W, Muratli J, et al. Interstitial fluid chemistry of sediments underlying the North Atlantic gyre and the influence of subsurface fluid flow. Earth Planet Sci Lett. 2012;323:79–91.

    Article 
    CAS 

    Google Scholar 

  • 36.

    Huang Y. The no3-/o2 respiration ratio of the deep sedimentary biosphere in the pacific gyres. Open Access Master’s Thesis Paper 288, University of Rhode Island. 2014; https://digitalcommons.uri.edu/theses/288.

  • 37.

    Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, et al. Global multi-resolution topography synthesis. Geochem Geophysics Geosystems. 2009;10:Q03014.

    Google Scholar 

  • 38.

    Bolleter W, Bushman C, Tidwell PW. Spectrophotometric determination of ammonia as indophenol. Anal Chem. 1961;33:592–4.

    CAS 
    Article 

    Google Scholar 

  • 39.

    Hansen HP, Koroleff F. Determination of nutrients. Methods of seawater analysis. 1999. p. 159−228.

  • 40.

    Expedition 336 Scientists. Sediment and basement contact coring. In Edwards, KJ, Bach, W, Klaus, A, and the Expedition 336 Scientists, Proc IODP, 336: Tokyo (Integrated Ocean Drilling Program Management International, Inc) 2012.

  • 41.

    Mogollón JM, Mewes K, Kasten S. Quantifying manganese and nitrogen cycle coupling in manganese‐rich, organic carbon‐starved marine sediments: Examples from the Clarion−Clipperton fracture zone. Geophys Res Lett. 2016;43:7114–23.

    Article 
    CAS 

    Google Scholar 

  • 42.

    Jørgensen BB. Comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. Ii. Calculation from mathematical models. Geomicrobiol J. 1978;1:29–47.

    Article 

    Google Scholar 

  • 43.

    Grundmanis V, Murray JW. Aerobic respiration in pelagic marine sediments. Geochimica et Cosmochimica Acta. 1982;46:1101–20.

    CAS 
    Article 

    Google Scholar 

  • 44.

    Murray JW, Kuivila KM. Organic matter diagenesis in the northeast pacific: Transition from aerobic red clay to suboxic hemipelagic sediments. Deep-Sea Res Part A. 1990;37:59–80.

    CAS 
    Article 

    Google Scholar 

  • 45.

    Anderson LA, Sarmiento JL. Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochemical Cycles. 1994;8:65–80.

    CAS 
    Article 

    Google Scholar 

  • 46.

    Dick JM. Calculation of the relative metastabilities of proteins using the chnosz software package. Geochemical Trans. 2008;9:10.

    Article 
    CAS 

    Google Scholar 

  • 47.

    Helgeson HC. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci. 1969;267:729–804.

    CAS 
    Article 

    Google Scholar 

  • 48.

    Jung M-Y, Sedlacek CJ, Dimitri Kits K, Mueller AJ, Rhee S-K, Hink L et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. Preprint at bioRxiv https://doi.org/10.1101/2021.03.02.433310. 2021.

  • 49.

    Beman JM, Chow CE, King AL, Feng YY, Fuhrman JA, Andersson A, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA. 2011;108:208–13.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Zeebe RE, Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes. Gulf Professional Publishing; 2001.

  • 51.

    Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M, Herndl GJ. Nitrosopumilus adriaticus sp. Nov. And nitrosopumilus piranensis sp. Nov., two ammonia-oxidizing archaea from the Adriatic sea and members of the class nitrososphaeria. Int J Syst Evolut Microbiol. 2019;69:1892–902.

    CAS 
    Article 

    Google Scholar 

  • 52.

    Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., nitrosopumilus cobalaminigenes sp. nov., nitrosopumilus oxyclinae sp. nov., and nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum thaumarchaeota. Int J Syst Evolut Microbiol. 2017;67:5067–79.

    Article 

    Google Scholar 

  • 53.

    Tijhuis L, van Loosdrecht MCM, Heijnen JJ. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng. 1993;42:509–19.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Glover HE. The relationship between inorganic nitrogen oxidation and organic carbon production in batch and chemostat cultures of marine nitrifying bacteria. Arch Microbiol. 1985;142:45–50.

    CAS 
    Article 

    Google Scholar 

  • 55.

    Jahnke RA, Emerson SR, Reimers CE, Schuffert J, Ruttenberg K, Archer D. Benthic recycling of biogenic debris in the eastern tropical Atlantic ocean. Geochimica et Cosmochimica Acta. 1989;53:2947–60.

    CAS 
    Article 

    Google Scholar 

  • 56.

    Nath BN, Mudholkar AV. Early diagenetic processes affecting nutrients in the pore waters of central Indian ocean cores. Mar Geol. 1989;86:57–66.

    CAS 
    Article 

    Google Scholar 

  • 57.

    Van Der Loeff MMR. Oxygen in pore waters of deep-sea sediments. Philos Trans R Soc A. 1990;331:69–84.

    Google Scholar 

  • 58.

    Mewes K, Mogollón J, Picard A, Rühlemann C, Eisenhauer A, Kuhn T, et al. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: an example from the Clarion–Clipperton fracture zone. Earth Planet Sci Lett. 2016;433:215–25.

    CAS 
    Article 

    Google Scholar 

  • 59.

    Buchwald C, Homola K, Spivack AJ, Estes ER, Murray RW, Wankel SD. Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere. Glob Biogeochemical Cycles. 2018;32:1688–702.

    CAS 
    Article 

    Google Scholar 

  • 60.

    Volz JB, Mogollón JM, Geibert W, Arbizu PM, Koschinsky A, Kasten S. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton zone, pacific ocean. Deep Sea Res Part I. 2018;140:159–72.

    CAS 
    Article 

    Google Scholar 

  • 61.

    Wang Y, Van, Cappellen P. A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta. 1996;60:2993–3014.

    CAS 
    Article 

    Google Scholar 

  • 62.

    Soetaert K, Herman PMJ, Middelburg JJ. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta. 1996;60:1019–40.

    CAS 
    Article 

    Google Scholar 

  • 63.

    Wilson TRS. Evidence for denitrification in aerobic pelagic sediments. Nature 1978;274:354–6.

    CAS 
    Article 

    Google Scholar 

  • 64.

    Brandes JA, Devol AH. Simultaneous nitrate and oxygen respiration in coastal sediments – evidence for discrete diagenesis. J Mar Res. 1995;53:771–97.

    CAS 
    Article 

    Google Scholar 

  • 65.

    Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, et al. Aerobic denitrification in permeable wadden sea sediments. ISME J. 2010;4:417–26.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799–812.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci. 2018;11:263–8.

    CAS 
    Article 

    Google Scholar 

  • 68.

    Henriksen K, Hansen J, Blackburn T. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters. Mar Biol. 1981;61:299–304.

    CAS 
    Article 

    Google Scholar 

  • 69.

    Billen G. Evaluation of nitrifying activity in sediments by dark 14c-bicarbonate incorporation. Water Res. 1976;10:51–7.

    CAS 
    Article 

    Google Scholar 

  • 70.

    Newell SE, Fawcett SE, Ward BB. Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the sargasso sea. Limnol Oceanogr. 2013;58:1491–500.

    CAS 
    Article 

    Google Scholar 

  • 71.

    Zhao R, Dahle H, Ramírez GA, Jørgensen SL. Indigenous ammonia-oxidizing archaea in oxic subseafloor oceanic crust. mSystems 2020;5:e00758–19.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Müller V, Hess V. The minimum biological energy quantum. Front Microbiol. 2017;8:2019.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Jørgensen SL, Hannisdal B, Lanzen A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the arctic mid-ocean ridge. Proc Natl Acad Sci USA. 2012;109:2846–55.

    Article 

    Google Scholar 

  • 74.

    Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by nitrospira bacteria. Nature 2015;528:504–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Durbin AM, Teske A. Sediment-associated microdiversity within the marine group i crenarchaeota. Environ Microbiol Rep. 2010;2:693–703.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ. Archaeal amoa gene diversity points to distinct biogeography of ammonia-oxidizing crenarchaeota in the ocean. Environ Microbiol. 2013;15:1647–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. Cyanate as an energy source for nitrifiers. Nature 2015;524:105–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Marschall E, Jogler M, Henßge U, Overmann J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the black sea. Environ Microbiol. 2010;12:1348–62.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    McCollom T, Amend J. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro‐organisms in oxic and anoxic environments. Geobiology 2005;3:135–44.

    CAS 
    Article 

    Google Scholar 

  • 82.

    D’Hondt S, Rutherford S, Spivack AJ. Metabolic activity of subsurface life in deep-sea sediments. Science 2002;295:2067–70.

    PubMed 
    Article 

    Google Scholar 

  • 83.

    Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA. 2004;101:4631–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Gibson B, Wilson DJ, Feil E, Eyre-Walker A. The distribution of bacterial doubling times in the wild. Proc R Soc B: Biol Sci 2018;285:20180789.

    Article 
    CAS 

    Google Scholar 

  • 85.

    Weissman JL, Hou S, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc Natl Acad Sci 2021;118:e2016810118.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 86.

    Steen AD, Kevorkian RT, Bird JT, Dombrowski N, Baker BJ, Hagen SM, et al. Kinetics and identities of extracellular peptidases in subsurface sediments of the white oak river estuary, North Carolina. Appl Environ Microbiol. 2019;85:e00102–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H, López-Pérez M, et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci USA 2019;116:15645–50.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Cai L, Jørgensen BB, Suttle CA, He M, Cragg BA, Jiao N, et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 2019;13:1857–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Paul SA, Gaye B, Haeckel M, Kasten S, Koschinsky A. Biogeochemical regeneration of a nodule mining disturbance site: trace metals, doc and amino acids in deep-sea sediments and pore waters. Front Mar Sci. 2018;5:117.

    Article 

    Google Scholar 

  • 90.

    D’Hondt S, Pockalny R, Fulfer VM, Spivack AJ. Subseafloor life and its biogeochemical impacts. Nat Commun. 2019;10:3519.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments

    Grace Moore ’21 receives Michel David-Weill Scholarship