in

An insight of anopheline larvicidal mechanism of Trichoderma asperellum (TaspSKGN2)

  • 1.

    Ghosh, S. K., Podder, D., Panja, S., & Mukherjee, S. In target areas where human mosquito-borne diseases are diagnosed, the inclusion of the pre-adult mosquito aquatic niches parameters will improve the integrated mosquito control program. PLos Neg. Trop. Dis. 14(8), e0008605 (2020).

    Article 

    Google Scholar 

  • 2.

    Becker, B. N. et al. Mosquitoes and Their Control 499 (Springer, 2010).

    Book 

    Google Scholar 

  • 3.

    Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).

    Article 

    Google Scholar 

  • 4.

    Clark, T. B., Kellen, W. R., Fukuda, T. & Lindegren, J. E. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. J. Invertebr. Pathol. 11(1), 1–7 (1968).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Scholte, E. J., Knols, B. G. & Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 91(1), 43–49 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Bukhari, T., Takken, W. & Koenraadt, C. J. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasit. Vectors 4(1), 23 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Mukherjee, A., Debnath, P., Ghosh, S. K. & Medda, P. K. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33, 1–10 (2020).

    Article 

    Google Scholar 

  • 8.

    Fernández-Grandon, G. M., Harte, S. J., Ewany, J., Bray, D. & Stevenson, P. C. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 9, 173 (2020).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Sobczak, J. F. et al. Manipulation of wasp (Hymenoptera: Vespidae) behavior by the entomopathogenic fungus Ophiocordyceps humbertii in the Atlantic forest in Ceará, Brazil. Entomol. News 129, 98–104 (2020).

    Article 

    Google Scholar 

  • 10.

    Ghosh, S. K. & Pal, S. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ. Monit. Assess. 188(1), 37 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 11.

    Podder, D. & Ghosh, S. K. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Sci. Reps. 9(1), 1108 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Jones, E. B. G. Fungal adhesion. Mycol. Res. 98(9), 961–981 (1994).

    Article 

    Google Scholar 

  • 13.

    Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Rudall, K. M. The chitin/protein complexes of insect cuticles. Adv. Insect Physiol. 1, 257–313 (1963).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Shah, F. A., Wang, C. S. & Butt, T. M. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. Lett. 251(2), 259–266 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55(1), 129–145 (2010).

    Article 

    Google Scholar 

  • 17.

    Vega, F.E.; Meyling, N., Luangsa-ard, J.& Blackwell, M. Fungal entomopathogens. In: edit Vega, F. and Kaya, H. A. Insect pathology, 2nd edn , San Diego, CA, Academic Press, pp 171–220 (2012).

  • 18.

    Gaugler, R. Entomopathogenic nematodes in biological control. CRC press (2018).

  • 19.

    McKinnon, A. C. et al. Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed zea mays plants. Front. Microbiol. 9, 1161 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 17(9), 879–920 (2007).

    Article 

    Google Scholar 

  • 21.

    Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239(4837), 288–290 (1988).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Dhawan, M. & Joshi, N. (Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Braz. J. Microbiol. 48(3), 522–529 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Mora, M. A. E., Castilho, A. M. C. & Fraga, M. E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84, 0552015 (2017).

    Google Scholar 

  • 24.

    Li, J., Tracy, J. W. & Christensen, B. M. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Dev. Comp. Immunol. 16(1), 41–48 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Nanda, K. P. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. Chemosphere 236, 124349 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Ghosh, S. K., Chatterjee, T., Chakravarty, A. & Basak, A. K. Sodium and potassium nitrite-induced developmental genotoxicity in Drosophila melanogaster—effects in larval immune and brain stem cells. Interdiscip. Toxicol. 13(4), 101–105 (2020).

    Google Scholar 

  • 28.

    Chatterjee, T., Ghosh, S. K., Paik, S., Chakravarty, A. & Basak, A. K. Benzoic acid treated Drosophila melanogaster the genetic disruption of larval brain stem cells and non-neural cells during metamorphosis. Toxicol. Environ. Health Sci. https://doi.org/10.1007/s13530-021-00082-w (2021).

    Article 

    Google Scholar 

  • 29.

    Campos, R. A. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 50(5), 257–261 (2005).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    McFarlane, H. E., Gendre, D. & Western, T. L. Seed coat ruthenium red staining assay. Bio-Protoc. 4, 1096 (2014).

    Article 

    Google Scholar 

  • 31.

    Bhosale, R. R., Osmani, R. A. M. & Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. Int. J. Res. Phytochem. Pharmacol 6(4), 901–912 (2014).

    Google Scholar 

  • 32.

    Shah, F. A., Allen, N., Wright, C. J. & Butt, T. M. Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol. Lett. 276(1), 60–66 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Hsu, S. C. & Lockwood, J. L. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Environ. Microbiol. 29(3), 422–426 (1975).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Parida, D., Jena, S. K. & Rath, C. C. Enzyme activities of bacterial isolates from iron mine areas of Barbil, Keonjhar district, Odisha, India. Int. J. Pure Appl. Biosci. 2(3), 265–271 (2014).

    Google Scholar 

  • 35.

    Kasana, R. C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Medina, P. & Baresi, L. Rapid identification of gelatin and casein hydrolysis using TCA. J. Microbiol. Methods 69(2), 391–393 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Al-Nahdi, H. S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. Appl. Pharm. Sci. 2(9), 71–74 (2012).

    CAS 

    Google Scholar 

  • 38.

    Murthy, N. K. & Bleakley, B. H. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Int. J. Microbiol. 10(2), 1937–8289 (2012).

    Google Scholar 

  • 39.

    Park, S. H., Lee, J. H. & Lee, H. K. Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J. Microbiol 38, 224–229 (2000).

    CAS 

    Google Scholar 

  • 40.

    Roberts, W. K. & Selitrennikoff, C. P. Plant and bacterial chitinases differ in antifungal activity. Microbiology 134(1), 169–176 (1986).

    Article 

    Google Scholar 

  • 41.

    Tsuchida, O. et al. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14(1), 7–12 (1986).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Crowell, A. M., Wall, M. J. & Doucette, A. A Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta. 796, 48–54 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    He, F. BCA (Bicinchoninic Acid) protein assay. Bio Protocol 1(5), 44 (2011).

    Article 

    Google Scholar 

  • 44.

    Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. The comet assay in Drosophila: neuroblast and hemocyte cells. In Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. 269–82 (2014).

  • 45.

    Xu, T. et al. (2012) HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody. PLoS ONE 7(11), e50789 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Basak, A. K., Chatterjee, T., Chakravarty, A. & Ghosh, S. K. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. Environ. Monit. Assess. 191(8), 497 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Will yield gains be lost to disease?

    Principles, drivers and opportunities of a circular bioeconomy