in

Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012

[adace-ad id="91168"]
  • 1.

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator. PloS One 12, e0169156 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evolut. Systemat. 46, 523–549 (2015).

    Article 

    Google Scholar 

  • 4.

    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Dobson, A. Monitoring global rates of biodiversity change: Challenges that arise in meeting the convention on biological diversity (CBD) 2010 goals. Philos. Trans. R. Soc. B Biol. Sci. 360, 229–241 (2005).

    Article 

    Google Scholar 

  • 6.

    Walpole, M. et al. Tracking progress toward the 2010 biodiversity target and beyond. Science 325, 1503–1504 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Butchart, S. H. et al. Global biodiversity: Indicators of recent declines. Science 1164–1168, (2010).

  • 8.

    Jones, J. P. et al. The why, what, and how of global biodiversity indicators beyond the 2010 target. Conserv. Biol. 25, 450–457 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Lawton, J. H. et al. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391, 72–76 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Systemat. 28, 495–516 (1997).

    Article 

    Google Scholar 

  • 11.

    Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. Lond. B Biol. Sci. 275, 1441–1448 (2008).

    Google Scholar 

  • 12.

    Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. Lond. B Biol. Sci. 281, 20141371 (2014).

    Google Scholar 

  • 13.

    on Biodiversity, I. S.-P. P. & Ecosystem Services, I. The methodological assessment report on scenarios and models of biodiversity and ecosystem services. https://doi.org/10.5281/zenodo.3235429 (2016).

  • 14.

    Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evolut. 3, 539–551 (2019).

    Article 

    Google Scholar 

  • 15.

    LPI. Living planet index database. http://www.livingplanetindex.org (2016).

  • 16.

    Dornelas, M. et al. Biotime: A database of biodiversity time series for the anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 366, 339–345. https://doi.org/10.1126/science.aaw1620 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Gonzalez, A. et al. Estimating local biodiversity change: A critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: The predicts project. Adv. Ecol. Res. 58, 201–241 (2018).

    Article 

    Google Scholar 

  • 20.

    Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Diversity Distribut. 23, 1372–1380 (2017).

    Article 

    Google Scholar 

  • 21.

    Scholes, R. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature. 471, 51–57 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 26.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).

    Article 

    Google Scholar 

  • 28.

    Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 29.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Article 

    Google Scholar 

  • 30.

    Mandl, N., Lehnert, M., Kessler, M. & Gradstein, S. R. A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern ecuador. Biodiversity Conservat. 19, 2359–2369 (2010).

    Article 

    Google Scholar 

  • 31.

    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evolut. 31, 67–80 (2016).

    Article 

    Google Scholar 

  • 32.

    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).

    Article 

    Google Scholar 

  • 33.

    Cardinale, B. J., Gonzalez, A., Allington, G. R. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conservat. 219, 175–183 (2018).

    Article 

    Google Scholar 

  • 34.

    Díaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science. https://doi.org/10.1126/science.aax3100 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? a global assessment. Science 353, 288–291 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Hudson, L. N. et al. The database of the predicts (projecting responses of ecological diversity in changing terrestrial systems) project. Ecol. Evolut. 7, 145–188 (2017).

    Article 

    Google Scholar 

  • 37.

    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. 110, E2602–E2610. https://doi.org/10.1073/pnas.1302251110 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394. https://doi.org/10.1002/pan3.10071 (2020).

    Article 

    Google Scholar 

  • 40.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52, 143–150 (2002).

    Article 

    Google Scholar 

  • 42.

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: Challenges and future directions. Remote Sens. Ecol. Conservat. 2, 122–131 (2016).

    Article 

    Google Scholar 

  • 46.

    Benítez-López, A., Santini, L. L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, 1–18. https://doi.org/10.1371/journal.pbio.3000247 (2019).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).

    Article 

    Google Scholar 

  • 48.

    Sloan, S. & Sayer, J. A. Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Forest Ecol. Manag. 352, 134–145 (2015).

    Article 

    Google Scholar 

  • 49.

    Smith, R. J., Muir, R. D., Walpole, M. J., Balmford, A. & Leader-Williams, N. Governance and the loss of biodiversity. Nature 426, 67 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Xu, R. Measuring explained variation in linear mixed effects models. Stat. Med. 22, 3527–3541. https://doi.org/10.1002/sim.1572 (2003).

    Article 
    PubMed 

    Google Scholar 

  • 52.

    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139, 10.21105/joss.03139 (2021).

    ADS 

    Google Scholar 

  • 53.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points?. Trends Ecol. Evolut. 28, 396–401 (2013).

    Article 

    Google Scholar 

  • 55.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Montoya, J. M., Donohue, I. & Pimm, S. L. Planetary boundaries for biodiversity: Implausible science, pernicious policies. Trends Ecol. Evolut. 33, 71–73. https://doi.org/10.1016/j.tree.2017.10.004 (2018).

    Article 

    Google Scholar 

  • 57.

    Homer-Dixon, T. Environment, Scarcity, and Violence (Princeton University Press, 2010).

    Book 

    Google Scholar 

  • 58.

    Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evolut. 4, 91–103 (2014).

    Article 

    Google Scholar 

  • 59.

    Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239. https://doi.org/10.1126/science.aax9387 (2019) https://science.sciencemag.org/content/366/6470/1236.full.pdf.

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 61.

    Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. & Laurance, W. F. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conservat. 177, 12–24 (2014).

    Article 

    Google Scholar 

  • 64.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Phillips, H. R., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodiversity Conservat. 26, 2251–2270 (2017).

    Article 

    Google Scholar 

  • 67.

    Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).

    Article 

    Google Scholar 

  • 68.

    Rouget, M., Cowling, R., Vlok, J., Thompson, M. & Balmford, A. Getting the biodiversity intactness index right: The importance of habitat degradation data. Glob. Change Biol. 12, 2032–2036 (2006).

    ADS 
    Article 

    Google Scholar 

  • 69.

    Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical biodiversity?. Conserv. Lett. 1, 60–64 (2008).

    Article 

    Google Scholar 

  • 70.

    WWF. In Living planet report 2020 (eds. Almond, R. E. A., Grooten, M., & Petersen, T) (WWF, Gland, Switzerland) (2004).

  • 71.

    IPBES. Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services (ed. Ferrier, S), Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 348 (2016).

  • 72.

    Brauman, K. A. et al. Chapter 2.3. Status and Trends—Nature’s Contributions to People (NCP). https://doi.org/10.5281/zenodo.3832036 (2020).

  • 73.

    Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52, 891–904 (2002).

    Article 

    Google Scholar 

  • 74.

    Martin, P., Green, R. E. & Balmford, A. Is biodiversity as intact as we think it is?. PeerJ Preprints 7, e27575v1 (2019).

    Google Scholar 

  • 75.

    Newbold, T., Sanchez-Ortiz, K., De Palma, A., Hill, S. L. & Purvis, A. Reply to ‘the biodiversity intactness index may underestimate losses’. Nat. Ecol. Evolut. 3, 864–865 (2019).

    Article 

    Google Scholar 

  • 76.

    Faith, D. P., Ferrier, S. & Williams, K. J. Getting biodiversity intactness indices right: Ensuring that ‘biodiversity’ reflects ‘diversity’. Glob. Change Biol. 14, 207–217 (2008).

    ADS 
    Article 

    Google Scholar 

  • 77.

    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 78.

    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 285, 20180792 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evolut. 7, 7897–7908 (2017).

    Article 

    Google Scholar 

  • 80.

    De Chazal, J. & Rounsevell, M. D. Land-use and climate change within assessments of biodiversity change: a review. Glob. Environ. Change 19, 306–315 (2009).

    Article 

    Google Scholar 

  • 81.

    Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with globio 4. Glob. Change Biol. 26, 760–771. https://doi.org/10.1111/gcb.14848 (2020).

    ADS 
    Article 

    Google Scholar 

  • 82.

    Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian amazon. Science 337, 228–232 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 83.

    De Palma, A. et al. Challenges with inferring how land-use affects terrestrial biodiversity: Study design, time, space and synthesis. In Advances in Ecological Research, vol. 58, 163–199 (Elsevier, 2018).

  • 84.

    De Palma, A. et al. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Sci. Rep. 6, 31153 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 85.

    Bicknell, J. E., Gaveau, D. L., Davies, Z. G. & Struebig, M. J. Saving logged tropical forests: Closing roads will bring immediate benefits. Front. Ecol. Environ. 13, 73–74 (2015).

    Article 

    Google Scholar 

  • 86.

    Laurance, W. F., Goosem, M. & Laurance, S. G. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evolut. 24, 659–669 (2009).

    Article 

    Google Scholar 

  • 87.

    Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 170001 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).

  • 89.

    Olsen, E. et al. Ecosystem model skill assessment. Yes we can!. PLoS One 11, e0146467 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 90.

    Hoskins, A. J. et al. Downscaling land-use data to provide global 30 ’ ’estimates of five land-use classes. Ecol. Evolut. 6, 3040–3055 (2016).

    Article 

    Google Scholar 

  • 91.

    Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evolut. 7, 424 (2019).

    Article 

    Google Scholar 

  • 92.

    Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conservat. Biol. 35, 492–501 (2021).

    Article 

    Google Scholar 

  • 93.

    Bradshaw, C. J., Sodhi, N. S. & Brook, B. W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 7, 79–87 (2009).

    Article 

    Google Scholar 

  • 94.

    De Palma, A., Sanchez-Ortiz, K. & Purvis, A. Calculating the Biodiversity Intactness Index: the PREDICTS implementation (2019). This is the first release of a repository from https://github.com/adrianadepalma/BII_tutorial You can also view the document here. https://adrianadepalma.github.io/BII_tutorial/bii_example.html. https://doi.org/10.5281/zenodo.3518067.

  • 95.

    Hudson, L. N. et al. The predicts database: A global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evolut. 4, 4701–4735 (2014).

    Article 

    Google Scholar 

  • 96.

    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 97.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 98.

    for International Earth Science Information Network (CIESIN) Columbia University, C. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision of UN WPP Country Totals (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2016). (Accessed 10 November 2017).

  • 99.

    for International Earth Science Information Network (CIESIN) Columbia University, C. & of Georgia, I. T. O. S. I. U. Global Roads Open Access Data Set, Version 1 (gROADSv1) (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2013). (Accessed 19 January 2017).

  • 100.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 101.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • 102.

    Crawley, M. J. The R Book (Wiley, Chichester, England, 2007).

    MATH 
    Book 

    Google Scholar 

  • 103.

    Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).

    Article 

    Google Scholar 

  • 104.

    Fox, J. & Weisberg, S. An R companion to applied regression (Sage Publications, 2011).

    Google Scholar 

  • 105.

    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics. 857–871, (1971).

  • 106.

    van der Loo, M. gower: Gower’s distance (R Foundation for Statistical Computing, 2017). R package version 0.1.2. https://www.R-project.org

  • 107.

    Lichstein, J. W. Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).

    Article 

    Google Scholar 

  • 108.

    Team, R.C. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2017).

    Google Scholar 

  • 109.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer New York, 2009).

    MATH 
    Book 

    Google Scholar 

  • 110.

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    ADS 
    Article 

    Google Scholar 

  • 111.

    Friedl, M. A. et al. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).

    ADS 
    Article 

    Google Scholar 

  • 112.

    Goldewijk, K. K. Three centuries of global population growth: A spatial referenced population (density) database for 1700–2000. Populat. Environ. 26, 343–367 (2005).

    Article 

    Google Scholar 

  • 113.

    Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).

    ADS 
    Article 

    Google Scholar 

  • 114.

    van Asselen, S. & Verburg, P. H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Change Biol. 19, 3648–3667. https://doi.org/10.1111/gcb.12331 (2013).

    ADS 
    Article 

    Google Scholar 

  • 115.

    Brooks, T. M. et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci. Data 3, 160007 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 116.

    World bank national accounts data, and oecd national accounts data files (2017). https://data.worldbank.org/indicator/NY.GDP.PCAP.CD

  • 117.

    Pinheiro, J. et al. Package ‘nlme’. Linear and Nonlinear Mixed Effects Models, version 3–1 (2017). https://CRAN.R-project.org/package=nlme

  • 118.

    Bivand, R., Hauke, J. & Kossowski, T. Computing the jacobian in gaussian spatial autoregressive models: An illustrated comparison of available methods. Geogr. Anal. 45, 150–179 (2013).

    Article 

    Google Scholar 

  • 119.

    Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).

    Google Scholar 

  • 120.

    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2017). R package version 0.1.5. https://CRAN.R-project.org/package=DHARMa


  • Source: Ecology - nature.com

    The influence of different morphological units on the turbulent flow characteristics in step-pool mountain streams

    Shared patterns in body size declines among crinoids during the Palaeozoic extinction events