Minter, N. J., Franks, N. R. & Brown, K. A. R. Morphogenesis of an extended phenotype: Four-dimensional ant nest architecture. J. R. Soc. Interface 9, 586–595 (2012).
Google Scholar
Dawkins, R. The Extended Phenotype: The Long Reach of the Gene (Oxford University Press, 2016).
Tschinkel, W. R. The architecture of subterranean ant nests: Beauty and mystery underfoot. J. Bioecon. 17, 271–291 (2015).
Brian, M. V. & Brian, M. V. Production Ecology of Ants and Termites (Cambridge University Press, 1978).
De Bruyn, L. A. L. & Conacher, A. J. The role of termites and ants in soil modification: A review. Soil Res. 28, 55–93 (1990).
Sankovitz, M. A. & Breed, M. D. Effects of Formica podzolica ant colonies on soil moisture, nitrogen, and plant communities near nests. Ecol. Entomol. 44, 71–80 (2019).
Tschinkel, W. R. Subterranean ant nests: Trace fossils past and future?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 192, 321–333 (2003).
Pinter-Wollman, N. Nest architecture shapes the collective behaviour of harvester ants. Biol. Lett. 11, 20150695 (2015).
Google Scholar
Rosengren, R., Fortelius, W., Lindström, K. & Luther, A. Phenology and causation of nest heating and thermoregulation in red wood ants of the Formica rufa group studied in coniferous forest habitats in southern Finland. Ann. Zool. Fennici 24, 147–155 (1987).
Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).
Savolainen, R. & Vepsäläinen, K. A competition hierarchy among boreal ants: Impact on resource partitioning and community structure. Oikos 51, 135–155 (1988).
Frouz, J., Jílková, V. & Sorvari, J. Contribution of wood ants to nutrient cycling and ecosystem function. Wood Ant Ecol. Conserv. https://doi.org/10.1017/CBO9781107261402.010 (2016).
Google Scholar
Seeley, T. & Heinrich, B. Regulation of Temperature in the Nests of Social Insects (FAO, 1981).
Hillel, D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations (Elsevier, 1998).
Blomqvist, M. M., Olff, H., Blaauw, M. B., Bongers, T. & Van Der Putten, W. H. Interactions between above- and belowground biota: Importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos 90, 582–598 (2000).
MacMahon, J. A., Mull, J. F. & Crist, T. O. Harvester ants (Pogonomyrmex spp.): Their community and ecosystem influences. Annu. Rev. Ecol. Syst. 31, 265–291 (2000).
Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management 130–147 (Springer, 1994).
Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P. & Lepage, M. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Appl. Soil Ecol. 32, 153–164 (2006).
Khuong, A. et al. Stigmergic construction and topochemical information shape ant nest architecture. Proc. Natl. Acad. Sci. U. S. A. 113, 1303–1308 (2016).
Google Scholar
Bishop, T. R. et al. Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Glob. Change Biol. 25, 2162–2173 (2019).
Google Scholar
Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).
Google Scholar
Braschler, B. et al. Realised rather than fundamental thermal niches predict site occupancy: Implications for climate change forecasting. J. Anim. Ecol. 89, 2863–2875 (2020).
Google Scholar
Roeder, K. A., Bujan, J., Beurs, K. M., Weiser, M. D. & Kaspari, M. Thermal traits predict the winners and losers under climate change: An example from North American ant communities. Ecosphere 12, e03645 (2021).
Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. U. S. A. 105, 6668–6672 (2008).
Google Scholar
Diamond, S. E., Sorger, D. M., Hulcr, J. & Pelini, S. L. Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Glob. Change Biol. 18, 448–456 (2012).
Google Scholar
Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: How constrained are they?. Funct. Ecol. 27, 934–949 (2013).
Wilson, E. O. The effects of complex social life on evolution and biodiversity. Oikos 63, 13–18 (1992).
Google Scholar
Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 19, 357–366 (1979).
Deslippe, R. J. & Savolainen, R. Colony foundation and polygyny in the ant Formica podzolica. Behav. Ecol. Sociobiol. 37, 1–6 (1995).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Google Scholar
Chambers, J. M., Freeny, A. & Heiberger, R. M. Analysis of variance; designed experiments. Stat. Models S 5, 145–193 (1992).
Fox, J. Applied Regression Analysis and Generalized Linear Models (SAGE Publications, 2015).
Mikheyev, A. S. & Tschinkel, W. R. Nest architecture of the ant Formica pallidefulva: Structure, costs and rules of excavation. Insectes Soc. 51, 30–36 (2004).
Coppernoll-Houston, D. & Potter, C. Field measurements and satellite remote sensing of daily soil surface temperature variations in the lower Colorado desert of California. Climate 6, 94 (2018).
Jílková, V., Cajthaml, T. & Frouz, J. Respiration in wood ant (Formica aquilonia) nests as affected by altitudinal and seasonal changes in temperature. Soil Biol. Biochem. 86, 50–57 (2015).
Kadochová, Š, Frouz, J. & Roces, F. Sun basking in red wood ants Formica polyctena (Hymenoptera, Formicidae): Individual behaviour and temperature-dependent respiration rates. PLoS ONE 12, e0170570 (2017).
Google Scholar
Bollazzi, M., Kronenbitter, J. & Roces, F. Soil temperature, digging behaviour, and the adaptive value of nest depth in South American species of Acromyrmex leaf-cutting ants. Oecologia 158, 165–175 (2008).
Google Scholar
Stockan, J. A. & Robinson, E. J. H. Wood Ant Ecology and Conservation (Cambridge University Press, 2016).
Porter, S. D. Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invicta. J. Insect Physiol. 34, 1127–1133 (1988).
Lapointe, S. L., Serrano, M. S. & Jones, P. G. Microgeographic and vertical distribution of Acromynnex landolti (Hymenoptera: Formicidae) nests in a Neotropical Savanna. Environ. Entomol. 27, 636–641 (1998).
Fowler, H. G. Leaf-cuttings ants of the genera Atta and Acromyrmex of Paraguay (Hymenoptera: Formicidae). Mmitt. Mus. Naturkunde Berl. Dtsch. Entomol. Z. 32, 19–34 (2008).
Hansell, M. & Hansell, M. H. Animal Architecture (OUP, 2005).
Shik, J. Z., Arnan, X., Oms, C. S., Cerdá, X. & Boulay, R. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient. J. Anim. Ecol. 88, 1240–1249 (2019).
Google Scholar
Cerda, X., Retana, J. & Cros, S. Critical thermal limits in Mediterranean ant species: Trade-off between mortality risk and foraging performance. Funct. Ecol. 12, 45–55 (1998).
Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21, 1092–1102 (2015).
Google Scholar
Talbot, M. Distribution of ant species in the Chicago region with reference to ecological factors and physiological toleration. Ecology 15, 416–439 (1934).
Arnan, X. & Blüthgen, N. Using ecophysiological traits to predict climatic and activity niches: Lethal temperature and water loss in Mediterranean ants: Using physiology to predict niches. Glob. Ecol. Biogeogr. 24, 1454–1464 (2015).
Arnan, X., Blüthgen, N., Molowny-Horas, R. & Retana, J. Thermal characterization of European ant communities along thermal gradients and its implications for community resilience to temperature variability. Front. Ecol. Evol. 3, 138 (2015).
Baudier, K. M. & O’Donnell, S. Structure and thermal biology of subterranean army ant bivouacs in tropical montane forests. Insectes Soc. 63, 467–476 (2016).
Penick, C. A. & Tschinkel, W. R. Thermoregulatory brood transport in the fire ant, Solenopsis invicta. Insectes Soc. 55, 176–182 (2008).
Penick, C. A., Diamond, S. E., Sanders, N. J. & Dunn, R. R. Beyond thermal limits: Comprehensive metrics of performance identify key axes of thermal adaptation in ants. Funct. Ecol. 31, 1091–1100 (2017).
Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl. Acad. Sci. U. S. A. 106, 3835–3840 (2009).
Google Scholar
Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).
Google Scholar
Source: Ecology - nature.com