in

Ant nest architecture is shaped by local adaptation and plastic response to temperature

  • 1.

    Minter, N. J., Franks, N. R. & Brown, K. A. R. Morphogenesis of an extended phenotype: Four-dimensional ant nest architecture. J. R. Soc. Interface 9, 586–595 (2012).

    PubMed 

    Google Scholar 

  • 2.

    Dawkins, R. The Extended Phenotype: The Long Reach of the Gene (Oxford University Press, 2016).

    Google Scholar 

  • 3.

    Tschinkel, W. R. The architecture of subterranean ant nests: Beauty and mystery underfoot. J. Bioecon. 17, 271–291 (2015).

    Google Scholar 

  • 4.

    Brian, M. V. & Brian, M. V. Production Ecology of Ants and Termites (Cambridge University Press, 1978).

    Google Scholar 

  • 5.

    De Bruyn, L. A. L. & Conacher, A. J. The role of termites and ants in soil modification: A review. Soil Res. 28, 55–93 (1990).

    Google Scholar 

  • 6.

    Sankovitz, M. A. & Breed, M. D. Effects of Formica podzolica ant colonies on soil moisture, nitrogen, and plant communities near nests. Ecol. Entomol. 44, 71–80 (2019).

    Google Scholar 

  • 7.

    Tschinkel, W. R. Subterranean ant nests: Trace fossils past and future?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 192, 321–333 (2003).

    Google Scholar 

  • 8.

    Pinter-Wollman, N. Nest architecture shapes the collective behaviour of harvester ants. Biol. Lett. 11, 20150695 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Rosengren, R., Fortelius, W., Lindström, K. & Luther, A. Phenology and causation of nest heating and thermoregulation in red wood ants of the Formica rufa group studied in coniferous forest habitats in southern Finland. Ann. Zool. Fennici 24, 147–155 (1987).

    Google Scholar 

  • 10.

    Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).

    Google Scholar 

  • 11.

    Savolainen, R. & Vepsäläinen, K. A competition hierarchy among boreal ants: Impact on resource partitioning and community structure. Oikos 51, 135–155 (1988).

    Google Scholar 

  • 12.

    Frouz, J., Jílková, V. & Sorvari, J. Contribution of wood ants to nutrient cycling and ecosystem function. Wood Ant Ecol. Conserv. https://doi.org/10.1017/CBO9781107261402.010 (2016).

    Article 

    Google Scholar 

  • 13.

    Seeley, T. & Heinrich, B. Regulation of Temperature in the Nests of Social Insects (FAO, 1981).

    Google Scholar 

  • 14.

    Hillel, D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations (Elsevier, 1998).

    Google Scholar 

  • 15.

    Blomqvist, M. M., Olff, H., Blaauw, M. B., Bongers, T. & Van Der Putten, W. H. Interactions between above- and belowground biota: Importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos 90, 582–598 (2000).

    Google Scholar 

  • 16.

    MacMahon, J. A., Mull, J. F. & Crist, T. O. Harvester ants (Pogonomyrmex spp.): Their community and ecosystem influences. Annu. Rev. Ecol. Syst. 31, 265–291 (2000).

    Google Scholar 

  • 17.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management 130–147 (Springer, 1994).

    Google Scholar 

  • 18.

    Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P. & Lepage, M. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Appl. Soil Ecol. 32, 153–164 (2006).

    Google Scholar 

  • 19.

    Khuong, A. et al. Stigmergic construction and topochemical information shape ant nest architecture. Proc. Natl. Acad. Sci. U. S. A. 113, 1303–1308 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Bishop, T. R. et al. Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Glob. Change Biol. 25, 2162–2173 (2019).

    ADS 

    Google Scholar 

  • 21.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Braschler, B. et al. Realised rather than fundamental thermal niches predict site occupancy: Implications for climate change forecasting. J. Anim. Ecol. 89, 2863–2875 (2020).

    PubMed 

    Google Scholar 

  • 23.

    Roeder, K. A., Bujan, J., Beurs, K. M., Weiser, M. D. & Kaspari, M. Thermal traits predict the winners and losers under climate change: An example from North American ant communities. Ecosphere 12, e03645 (2021).

    Google Scholar 

  • 24.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. U. S. A. 105, 6668–6672 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Diamond, S. E., Sorger, D. M., Hulcr, J. & Pelini, S. L. Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Glob. Change Biol. 18, 448–456 (2012).

    ADS 

    Google Scholar 

  • 26.

    Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: How constrained are they?. Funct. Ecol. 27, 934–949 (2013).

    Google Scholar 

  • 27.

    Wilson, E. O. The effects of complex social life on evolution and biodiversity. Oikos 63, 13–18 (1992).

    CAS 

    Google Scholar 

  • 28.

    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 19, 357–366 (1979).

    Google Scholar 

  • 29.

    Deslippe, R. J. & Savolainen, R. Colony foundation and polygyny in the ant Formica podzolica. Behav. Ecol. Sociobiol. 37, 1–6 (1995).

    Google Scholar 

  • 30.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Chambers, J. M., Freeny, A. & Heiberger, R. M. Analysis of variance; designed experiments. Stat. Models S 5, 145–193 (1992).

    Google Scholar 

  • 32.

    Fox, J. Applied Regression Analysis and Generalized Linear Models (SAGE Publications, 2015).

    Google Scholar 

  • 33.

    Mikheyev, A. S. & Tschinkel, W. R. Nest architecture of the ant Formica pallidefulva: Structure, costs and rules of excavation. Insectes Soc. 51, 30–36 (2004).

    Google Scholar 

  • 34.

    Coppernoll-Houston, D. & Potter, C. Field measurements and satellite remote sensing of daily soil surface temperature variations in the lower Colorado desert of California. Climate 6, 94 (2018).

    Google Scholar 

  • 35.

    Jílková, V., Cajthaml, T. & Frouz, J. Respiration in wood ant (Formica aquilonia) nests as affected by altitudinal and seasonal changes in temperature. Soil Biol. Biochem. 86, 50–57 (2015).

    Google Scholar 

  • 36.

    Kadochová, Š, Frouz, J. & Roces, F. Sun basking in red wood ants Formica polyctena (Hymenoptera, Formicidae): Individual behaviour and temperature-dependent respiration rates. PLoS ONE 12, e0170570 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Bollazzi, M., Kronenbitter, J. & Roces, F. Soil temperature, digging behaviour, and the adaptive value of nest depth in South American species of Acromyrmex leaf-cutting ants. Oecologia 158, 165–175 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • 38.

    Stockan, J. A. & Robinson, E. J. H. Wood Ant Ecology and Conservation (Cambridge University Press, 2016).

    Google Scholar 

  • 39.

    Porter, S. D. Impact of temperature on colony growth and developmental rates of the ant, Solenopsis invicta. J. Insect Physiol. 34, 1127–1133 (1988).

    Google Scholar 

  • 40.

    Lapointe, S. L., Serrano, M. S. & Jones, P. G. Microgeographic and vertical distribution of Acromynnex landolti (Hymenoptera: Formicidae) nests in a Neotropical Savanna. Environ. Entomol. 27, 636–641 (1998).

    Google Scholar 

  • 41.

    Fowler, H. G. Leaf-cuttings ants of the genera Atta and Acromyrmex of Paraguay (Hymenoptera: Formicidae). Mmitt. Mus. Naturkunde Berl. Dtsch. Entomol. Z. 32, 19–34 (2008).

    Google Scholar 

  • 42.

    Hansell, M. & Hansell, M. H. Animal Architecture (OUP, 2005).

    Google Scholar 

  • 43.

    Shik, J. Z., Arnan, X., Oms, C. S., Cerdá, X. & Boulay, R. Evidence for locally adaptive metabolic rates among ant populations along an elevational gradient. J. Anim. Ecol. 88, 1240–1249 (2019).

    PubMed 

    Google Scholar 

  • 44.

    Cerda, X., Retana, J. & Cros, S. Critical thermal limits in Mediterranean ant species: Trade-off between mortality risk and foraging performance. Funct. Ecol. 12, 45–55 (1998).

    Google Scholar 

  • 45.

    Kaspari, M., Clay, N. A., Lucas, J., Yanoviak, S. P. & Kay, A. Thermal adaptation generates a diversity of thermal limits in a rainforest ant community. Glob. Change Biol. 21, 1092–1102 (2015).

    ADS 

    Google Scholar 

  • 46.

    Talbot, M. Distribution of ant species in the Chicago region with reference to ecological factors and physiological toleration. Ecology 15, 416–439 (1934).

    Google Scholar 

  • 47.

    Arnan, X. & Blüthgen, N. Using ecophysiological traits to predict climatic and activity niches: Lethal temperature and water loss in Mediterranean ants: Using physiology to predict niches. Glob. Ecol. Biogeogr. 24, 1454–1464 (2015).

    Google Scholar 

  • 48.

    Arnan, X., Blüthgen, N., Molowny-Horas, R. & Retana, J. Thermal characterization of European ant communities along thermal gradients and its implications for community resilience to temperature variability. Front. Ecol. Evol. 3, 138 (2015).

    Google Scholar 

  • 49.

    Baudier, K. M. & O’Donnell, S. Structure and thermal biology of subterranean army ant bivouacs in tropical montane forests. Insectes Soc. 63, 467–476 (2016).

    Google Scholar 

  • 50.

    Penick, C. A. & Tschinkel, W. R. Thermoregulatory brood transport in the fire ant, Solenopsis invicta. Insectes Soc. 55, 176–182 (2008).

    Google Scholar 

  • 51.

    Penick, C. A., Diamond, S. E., Sanders, N. J. & Dunn, R. R. Beyond thermal limits: Comprehensive metrics of performance identify key axes of thermal adaptation in ants. Funct. Ecol. 31, 1091–1100 (2017).

    Google Scholar 

  • 52.

    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘cold-blooded’ animals against climate warming. Proc. Natl. Acad. Sci. U. S. A. 106, 3835–3840 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    First tracking of the oceanic spawning migrations of Australasian short-finned eels (Anguilla australis)

    Timber or steel? Study helps builders reduce carbon footprint of truss structures