Silva, F. C., Cruz, N. C., Tarelho, L. A. C. & Rodrigues, S. M. Use of biomass ash-based materials as soil fertilisers: critical review of the existing regulatory framework. J. Clean Prod. 214, 112–124 (2019).
Huotari, N., Tillman-Sutela, E., Moilanen, M. & Laiho, R. Recycling of ash—for the good of the environment?. Forest Ecol. Manag. 348, 226–240 (2015).
Ingerslev, M., Skov, S., Sevel, L. & Pedersen, L. B. Element budgets of forest biomass combustion and ash fertilisation—a Danish case-study. Biomass Bioenergy 35, 2697–2704 (2011).
Karltun, E. et al. in Sustainable Use of Forest Biomass for Energy (eds Röser, D., Asikainen, A., Raulund-Rasmussen, K. & Stupak, I.) 79–108 (Springer, Berlin, 2008).
Thiffault, E. et al. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environ. Rev. 19, 278–309 (2011).
Aronsson, K. A. & Ekelund, N. G. A. Biological effects of wood ash application to forest and aquatic ecosystems. J. Environ. Qual. 33, 1595–1605 (2004).
Reimann, C. et al. Element levels in birch and spruce wood ashes—green energy?. Sci. Total Environ. 393, 191–197 (2008).
Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).
Rønn, R., Vestergard, M. & Ekelund, F. Interactions between bacteria, protozoa and nematodes in soil. Acta Protozool. 51, 223–235 (2012).
van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).
Wall, D. H. et al. Soil Ecology and Ecosystem Services (Oxford University Press, Oxford, 2012).
Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).
Kaiser, K. et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 6, 33696 (2016).
Waldrop, M. P., Balser, T. C. & Firestone, M. K. Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 32, 1837–1846 (2000).
Bang-Andreasen, T. et al. Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Front. Microbiol. 8, 1400 (2017).
Bååth, E. & Arnebrant, K. Growth-rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil. Biol. Biochem. 26, 995–1001 (1994).
Cruz-Paredes, C., Wallander, H., Kjøller, R. & Rousk, J. Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil. Biol. Biochem. 112, 153–164 (2017).
Fritze, H., Perkiömäki, J. & Pennanen, T. Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur. J. Soil Sci. 51, 565–573 (2000).
Frostegård, A., Bååth, E. & Tunlid, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil. Biol. Biochem. 25, 723–730 (1993).
Jokinen, H. K., Kiikkilä, O. & Fritze, H. Exploring the mechanisms behind elevated microbial activity after wood ash application. Soil. Biol. Biochem. 38, 2285–2291 (2006).
Noyce, G. L. et al. Soil microbial responses to wood ash addition and forest fire in managed Ontario forests. Appl. Soil Ecol. 107, 368–380 (2016).
Perkiömäki, J. & Fritze, H. Short and long-term effects of wood ash on the boreal forest humus microbial community. Soil. Biol. Biochem. 34, 1343–1353 (2002).
Vestergård, M. et al. The relative importance of the bacterial pathway and soil inorganic nitrogen increase across an extreme wood-ash application gradient. GBC Bioenergy 10, 320–334 (2018).
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).
Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).
Demeyer, A., Nkana, J. C. V. & Verloo, M. G. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour. Technol. 77, 287–295 (2001).
Maresca, A., Hyks, J. & Astrup, T. F. Recirculation of biomass ashes onto forest soils: ash composition, mineralogy and leaching properties. Waste Manag. 70, 127–138 (2017).
Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).
Nemergut, D. R., Cleveland, C. C., Wieder, W. R., Washenberger, C. L. & Townsend, A. R. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil. Biol. Biochem. 42, 2153–2160 (2010).
Philippot, L. et al. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8, 523–529 (2010).
Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).
Gömöryová, E., Pichler, V., Tóthová, S. & Gömöry, D. Changes of chemical and biological properties of distinct forest floor layers after wood ash application in a Norway spruce stand. Forests 7, 108 (2016).
Hansen, M., Bang-Andreasen, T., Sørensen, H. & Ingerslev, M. Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. For. Ecol. Manag. 406, 274–280 (2017).
Blume, E. et al. Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil. Ecol. 20, 171–181 (2002).
Ekelund, F., Rønn, R. & Christensen, S. Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol. Biochem. 33, 475–481 (2001).
Fierer, N., Schimel, J. P. & Holden, P. A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176 (2003).
Drew, M. C. Comparison of effects of a localized supply of phosphate, nitrate, ammonium and potassium on growth of seminal root system, and shoot, in Barley. New Phytol. 75, 479–490 (1975).
Hutchings, M. J. & John, E. A. The effects of environmental heterogeneity on root growth and root/shoot partitioning. Ann. Bot. 94, 1–8 (2004).
Brunner, I., Zimmermann, S., Zingg, A. & Blaser, P. Wood-ash recycling affects forest soil and tree fine-root chemistry and reverses soil acidification. Plant Soil. 267, 61–71 (2004).
Saarsalmi, A., Smolander, A., Moilanen, M. & Kukkola, M. Wood ash in boreal, low-productive pine stands on upland and peatland sites: long-term effects on stand growth and soil properties. For. Ecol. Manag. 327, 86–95 (2014).
Lanzén, A. et al. The community structures of prokaryotes and fungi in mountain pasture soils are highly correlated and primarily influenced by pH. Front. Microbiol. 6, 321 (2015).
Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).
Bang-Andreasen, T., Schostag, M., Prieme, A., Elberling, B. & Jacobsen, C. S. Potential microbial contamination during sampling of permafrost soil assessed by tracers. Sci. Rep. 7, 43338 (2017).
Saarsalmi, A., Kukkola, M., Moilanen, M. & Arola, M. Long-term effects of ash and N fertilization on stand growth, tree nutrient status and soil chemistry in a Scots pine stand. For. Ecol. Manag. 235, 116–128 (2006).
Zimmermann, S. & Frey, B. Soil respiration and microbial properties in an acid forest soil: effects of wood ash. Soil Biol. Biochem. 34, 1727–1737 (2002).
Bååth, E. Adaptation of soil bacterial communities to prevailing pH in different soils. Fems Microbiol. Ecol. 19, 227–237 (1996).
Madigan, M. T., Martinko, J. M., Dunlap, P. V. & Clark, D. P. Brock Biology of Microorganisms 14th edn. (Pearson, Boston, 2014).
Rosso, L., Lobry, J. R., Bajard, S. & Flandrois, J. P. Convenient model to describe the combined effects of temperature and pH on microbial-growth. Appl. Environ. Microb. 61, 610–616 (1995).
Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).
Kim, J. M. et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J. Microbiol. 54, 838–845 (2016).
Ochecova, P., Tlustos, P., Szakova, J., Mercl, F. & Maciak, M. Changes in nutrient plant availability in loam and sandy clay loam soils after wood fly and bottom ash amendment. Agron. J. 108, 487–497 (2016).
Pitman, R. M. Wood ash use in forestry—a review of the environmental impacts. Forestry 79, 563–588 (2006).
Cederlund, H. et al. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl. Soil Ecol. 84, 62–68 (2014).
Cleveland, C. C., Nemergut, D. R., Schmidt, S. K. & Townsend, A. R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82, 229–240 (2007).
Padmanabhan, P. et al. Respiration of C-13-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of C-13-labeled soil DNA. Appl. Environ. Microbiol. 69, 1614–1622 (2003).
Lladó, S. & Baldrian, P. Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments. PLoS ONE 12, e0171638 (2017).
Starke, R. et al. Bacteria dominate the short-term assimilation of plant-derived N in soil. Soil Biol. Biochem. 96, 30–38 (2016).
Teng, Y., Wang, X. M., Li, L. N., Li, Z. G. & Luo, Y. M. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front. Plant Sci. 6, 32 (2015).
Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).
Hansen, M., Saarsalmi, A. & Peltre, C. Changes in SOM composition and stability to microbial degradation over time in response to wood chip ash fertilisation. Soil Biol. Biochem. 99, 179–186 (2016).
Reid, C. & Watmough, S. A. Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Can. J. For. Res. 44, 867–885 (2014).
Levy-Booth, D. J. et al. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39, 2977–2991 (2007).
Nielsen, K. M., Johnsen, P. J., Bensasson, D. & Daffonchio, D. Release and persistence of extracellular DNA in the environment. Environ. Biosaf. Res. 6, 37–53 (2007).
Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 1–6 (2017).
Carvalhais, L. C., Dennis, P. G., Tyson, G. W. & Schenk, P. M. Application of metatranscriptomics to soil environments. J. Microbiol. Methods 91, 246–251 (2012).
Urich, T. et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3, e2527 (2008).
Bang-Andreasen, T. et al. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol. Ecol. 96, 1–13 (2019).
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).
Source: Ecology - nature.com