in

Application of wood ash leads to strong vertical gradients in soil pH changing prokaryotic community structure in forest top soil

  • 1.

    Silva, F. C., Cruz, N. C., Tarelho, L. A. C. & Rodrigues, S. M. Use of biomass ash-based materials as soil fertilisers: critical review of the existing regulatory framework. J. Clean Prod. 214, 112–124 (2019).

    Article  Google Scholar 

  • 2.

    Huotari, N., Tillman-Sutela, E., Moilanen, M. & Laiho, R. Recycling of ash—for the good of the environment?. Forest Ecol. Manag. 348, 226–240 (2015).

    Article  Google Scholar 

  • 3.

    Ingerslev, M., Skov, S., Sevel, L. & Pedersen, L. B. Element budgets of forest biomass combustion and ash fertilisation—a Danish case-study. Biomass Bioenergy 35, 2697–2704 (2011).

    CAS  Article  Google Scholar 

  • 4.

    Karltun, E. et al. in Sustainable Use of Forest Biomass for Energy (eds Röser, D., Asikainen, A., Raulund-Rasmussen, K. & Stupak, I.) 79–108 (Springer, Berlin, 2008).

  • 5.

    Thiffault, E. et al. Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environ. Rev. 19, 278–309 (2011).

    Article  CAS  Google Scholar 

  • 6.

    Aronsson, K. A. & Ekelund, N. G. A. Biological effects of wood ash application to forest and aquatic ecosystems. J. Environ. Qual. 33, 1595–1605 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Reimann, C. et al. Element levels in birch and spruce wood ashes—green energy?. Sci. Total Environ. 393, 191–197 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Rønn, R., Vestergard, M. & Ekelund, F. Interactions between bacteria, protozoa and nematodes in soil. Acta Protozool. 51, 223–235 (2012).

    Google Scholar 

  • 10.

    van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Wall, D. H. et al. Soil Ecology and Ecosystem Services (Oxford University Press, Oxford, 2012).

    Google Scholar 

  • 12.

    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Kaiser, K. et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci. Rep. 6, 33696 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Waldrop, M. P., Balser, T. C. & Firestone, M. K. Linking microbial community composition to function in a tropical soil. Soil Biol. Biochem. 32, 1837–1846 (2000).

    CAS  Article  Google Scholar 

  • 15.

    Bang-Andreasen, T. et al. Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Front. Microbiol. 8, 1400 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Bååth, E. & Arnebrant, K. Growth-rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil. Biol. Biochem. 26, 995–1001 (1994).

    Article  Google Scholar 

  • 17.

    Cruz-Paredes, C., Wallander, H., Kjøller, R. & Rousk, J. Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash. Soil. Biol. Biochem. 112, 153–164 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Fritze, H., Perkiömäki, J. & Pennanen, T. Distribution of microbial biomass and phospholipid fatty acids in Podzol profiles under coniferous forest. Eur. J. Soil Sci. 51, 565–573 (2000).

    CAS  Article  Google Scholar 

  • 19.

    Frostegård, A., Bååth, E. & Tunlid, A. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty-acid analysis. Soil. Biol. Biochem. 25, 723–730 (1993).

    Article  Google Scholar 

  • 20.

    Jokinen, H. K., Kiikkilä, O. & Fritze, H. Exploring the mechanisms behind elevated microbial activity after wood ash application. Soil. Biol. Biochem. 38, 2285–2291 (2006).

    CAS  Article  Google Scholar 

  • 21.

    Noyce, G. L. et al. Soil microbial responses to wood ash addition and forest fire in managed Ontario forests. Appl. Soil Ecol. 107, 368–380 (2016).

    Article  Google Scholar 

  • 22.

    Perkiömäki, J. & Fritze, H. Short and long-term effects of wood ash on the boreal forest humus microbial community. Soil. Biol. Biochem. 34, 1343–1353 (2002).

    Article  Google Scholar 

  • 23.

    Vestergård, M. et al. The relative importance of the bacterial pathway and soil inorganic nitrogen increase across an extreme wood-ash application gradient. GBC Bioenergy 10, 320–334 (2018).

    Google Scholar 

  • 24.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Demeyer, A., Nkana, J. C. V. & Verloo, M. G. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour. Technol. 77, 287–295 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Maresca, A., Hyks, J. & Astrup, T. F. Recirculation of biomass ashes onto forest soils: ash composition, mineralogy and leaching properties. Waste Manag. 70, 127–138 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Nemergut, D. R., Cleveland, C. C., Wieder, W. R., Washenberger, C. L. & Townsend, A. R. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil. Biol. Biochem. 42, 2153–2160 (2010).

    CAS  Article  Google Scholar 

  • 30.

    Philippot, L. et al. The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8, 523–529 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).

    ADS  Article  Google Scholar 

  • 32.

    Gömöryová, E., Pichler, V., Tóthová, S. & Gömöry, D. Changes of chemical and biological properties of distinct forest floor layers after wood ash application in a Norway spruce stand. Forests 7, 108 (2016).

    Article  Google Scholar 

  • 33.

    Hansen, M., Bang-Andreasen, T., Sørensen, H. & Ingerslev, M. Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. For. Ecol. Manag. 406, 274–280 (2017).

    Article  Google Scholar 

  • 34.

    Blume, E. et al. Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl. Soil. Ecol. 20, 171–181 (2002).

    Article  Google Scholar 

  • 35.

    Ekelund, F., Rønn, R. & Christensen, S. Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol. Biochem. 33, 475–481 (2001).

    CAS  Article  Google Scholar 

  • 36.

    Fierer, N., Schimel, J. P. & Holden, P. A. Variations in microbial community composition through two soil depth profiles. Soil Biol. Biochem. 35, 167–176 (2003).

    CAS  Article  Google Scholar 

  • 37.

    Drew, M. C. Comparison of effects of a localized supply of phosphate, nitrate, ammonium and potassium on growth of seminal root system, and shoot, in Barley. New Phytol. 75, 479–490 (1975).

    CAS  Article  Google Scholar 

  • 38.

    Hutchings, M. J. & John, E. A. The effects of environmental heterogeneity on root growth and root/shoot partitioning. Ann. Bot. 94, 1–8 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Brunner, I., Zimmermann, S., Zingg, A. & Blaser, P. Wood-ash recycling affects forest soil and tree fine-root chemistry and reverses soil acidification. Plant Soil. 267, 61–71 (2004).

    CAS  Article  Google Scholar 

  • 40.

    Saarsalmi, A., Smolander, A., Moilanen, M. & Kukkola, M. Wood ash in boreal, low-productive pine stands on upland and peatland sites: long-term effects on stand growth and soil properties. For. Ecol. Manag. 327, 86–95 (2014).

    Article  Google Scholar 

  • 41.

    Lanzén, A. et al. The community structures of prokaryotes and fungi in mountain pasture soils are highly correlated and primarily influenced by pH. Front. Microbiol. 6, 321 (2015).

    Article  Google Scholar 

  • 42.

    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Bang-Andreasen, T., Schostag, M., Prieme, A., Elberling, B. & Jacobsen, C. S. Potential microbial contamination during sampling of permafrost soil assessed by tracers. Sci. Rep. 7, 43338 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Saarsalmi, A., Kukkola, M., Moilanen, M. & Arola, M. Long-term effects of ash and N fertilization on stand growth, tree nutrient status and soil chemistry in a Scots pine stand. For. Ecol. Manag. 235, 116–128 (2006).

    Article  Google Scholar 

  • 45.

    Zimmermann, S. & Frey, B. Soil respiration and microbial properties in an acid forest soil: effects of wood ash. Soil Biol. Biochem. 34, 1727–1737 (2002).

    CAS  Article  Google Scholar 

  • 46.

    Bååth, E. Adaptation of soil bacterial communities to prevailing pH in different soils. Fems Microbiol. Ecol. 19, 227–237 (1996).

    ADS  Article  Google Scholar 

  • 47.

    Madigan, M. T., Martinko, J. M., Dunlap, P. V. & Clark, D. P. Brock Biology of Microorganisms 14th edn. (Pearson, Boston, 2014).

    Google Scholar 

  • 48.

    Rosso, L., Lobry, J. R., Bajard, S. & Flandrois, J. P. Convenient model to describe the combined effects of temperature and pH on microbial-growth. Appl. Environ. Microb. 61, 610–616 (1995).

    CAS  Article  Google Scholar 

  • 49.

    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Kim, J. M. et al. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J. Microbiol. 54, 838–845 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Ochecova, P., Tlustos, P., Szakova, J., Mercl, F. & Maciak, M. Changes in nutrient plant availability in loam and sandy clay loam soils after wood fly and bottom ash amendment. Agron. J. 108, 487–497 (2016).

    CAS  Article  Google Scholar 

  • 52.

    Pitman, R. M. Wood ash use in forestry—a review of the environmental impacts. Forestry 79, 563–588 (2006).

    Article  Google Scholar 

  • 53.

    Cederlund, H. et al. Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl. Soil Ecol. 84, 62–68 (2014).

    Article  Google Scholar 

  • 54.

    Cleveland, C. C., Nemergut, D. R., Schmidt, S. K. & Townsend, A. R. Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82, 229–240 (2007).

    CAS  Article  Google Scholar 

  • 55.

    Padmanabhan, P. et al. Respiration of C-13-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of C-13-labeled soil DNA. Appl. Environ. Microbiol. 69, 1614–1622 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Lladó, S. & Baldrian, P. Community-level physiological profiling analyses show potential to identify the copiotrophic bacteria present in soil environments. PLoS ONE 12, e0171638 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 57.

    Starke, R. et al. Bacteria dominate the short-term assimilation of plant-derived N in soil. Soil Biol. Biochem. 96, 30–38 (2016).

    CAS  Article  Google Scholar 

  • 58.

    Teng, Y., Wang, X. M., Li, L. N., Li, Z. G. & Luo, Y. M. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front. Plant Sci. 6, 32 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Bergmann, G. T. et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol. Biochem. 43, 1450–1455 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Hansen, M., Saarsalmi, A. & Peltre, C. Changes in SOM composition and stability to microbial degradation over time in response to wood chip ash fertilisation. Soil Biol. Biochem. 99, 179–186 (2016).

    CAS  Article  Google Scholar 

  • 61.

    Reid, C. & Watmough, S. A. Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Can. J. For. Res. 44, 867–885 (2014).

    CAS  Article  Google Scholar 

  • 62.

    Levy-Booth, D. J. et al. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39, 2977–2991 (2007).

    CAS  Article  Google Scholar 

  • 63.

    Nielsen, K. M., Johnsen, P. J., Bensasson, D. & Daffonchio, D. Release and persistence of extracellular DNA in the environment. Environ. Biosaf. Res. 6, 37–53 (2007).

    CAS  Article  Google Scholar 

  • 64.

    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 1–6 (2017).

    Article  CAS  Google Scholar 

  • 65.

    Carvalhais, L. C., Dennis, P. G., Tyson, G. W. & Schenk, P. M. Application of metatranscriptomics to soil environments. J. Microbiol. Methods 91, 246–251 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Urich, T. et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3, e2527 (2008).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 67.

    Bang-Andreasen, T. et al. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol. Ecol. 96, 1–13 (2019).

    Google Scholar 

  • 68.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)