Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. In Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 181–194 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-809665-9.09985-7.
Google Scholar
Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst. 29, 543–566 (1998).
Google Scholar
Pushie, M. J., Pickering, I. J., Korbas, M., Hackett, M. J. & George, G. N. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 114, 8499–8541 (2014).
Google Scholar
WHO. Exposure to Mercury: a Major Public Health Concern. (2007).
Berlin, M., Zalups, R. K. & Fowler, B. A. Chapter 46—Mercury. In Handbook on the Toxicology of Metals (Fourth Edition) (eds Nordberg, G. F. et al.) 1013–1075 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-444-59453-2.00046-9.
Google Scholar
Clarkson, T. W. The Toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34, 369–403 (1997).
Google Scholar
Abass, K. et al. Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans. Environ. Int. 114, 1–11 (2018).
Google Scholar
Liu, G., Cai, Y., O’Driscoll, N., Feng, X. & Jiang, G. Overview of mercury in the environment. In Environmental Chemistry and Toxicology of Mercury (eds Liu, G. et al.) 1–12 (Wiley, 2011). https://doi.org/10.1002/9781118146644.ch1.
Google Scholar
García, F., Ortega, A., Domingo, J. L. & Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona county, Spain. J. Environ. Sci. Health Part A 36, 1767–1786 (2001).
Google Scholar
Clarkson, T. W. & Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006).
Google Scholar
Holmes, P., James, K. A. F. & Levy, L. S. Is low-level environmental mercury exposure of concern to human health?. Sci. Total Environ. 408, 171–182 (2009).
Google Scholar
Pasetto, R., Martin-Olmedo, P., Martuzzi, M. & Iavarone, I. Exploring available options in characterising the health impact of industrially contaminated sites. Ann. Ist Super Sanita 52, 476–482 (2016).
Google Scholar
Álvarez-Fernández, N., Martínez Cortizas, A. & López-Costas, O. Atmospheric mercury pollution deciphered through archaeological bones. J. Archaeol. Sci. 119, 105159 (2020).
Google Scholar
Cooke, C. A., Martínez-Cortizas, A., Bindler, R. & Sexauer Gustin, M. Environmental archives of atmospheric Hg deposition—A review. Sci. Total Environ. 709, 134800 (2020).
Google Scholar
Leblanc, M., Morales, J. A., Borrego, J. & Elbaz-Poulichet, F. 4,500-year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 95, 655–662 (2000).
Google Scholar
Cooke, C. A., Balcom, P. H., Biester, H. & Wolfe, A. P. Over three millennia of mercury pollution in the Peruvian Andes. PNAS 106, 8830–8834 (2009).
Google Scholar
Hunt Ortiz, M. A., Consuegra, S., Díaz del Río, P., Hurtado Pérez, V. & Montero Ruiz, I. Neolithic and Chalcolithic –VI to III millennia BC– use of cinnabar (HgS) in the Iberian Peninsula: analytical identification and lead isotope data for an early mineral exploitation of the Almadén (Ciudad Real, Spain) mining district. (2011).
Martı́nez-Cortizas, A., Pontevedra-Pombal, X., Garcı́a-Rodeja, E., Nóvoa-Muñoz, J. C. & Shotyk, W. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 284, 939–942 (1999).
Martínez Cortizas, A., Peiteado Varela, E., Bindler, R., Biester, H. & Cheburkin, A. Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochimica et Cosmochimica Acta 82, 68–78 (2012).
López-Costas, O. et al. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Sci. Total Environ. 710, 136319 (2020).
Google Scholar
Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).
Google Scholar
Yamada, M. et al. Accumulation of mercury in excavated bones of two natives in Japan. Sci. Total Environ. 162, 253–256 (1995).
Google Scholar
Emslie, S. D. et al. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci. Rep. 5, 14679 (2015).
Google Scholar
Alexandrovskaya, E. & Alexandrovskiy, A. Radiocarbon data and anthropochemistry of ancient Moscow. Geochronometria 24, 87–95 (2005).
Ávila, A., Mansilla, J., Bosch, P. & Pijoan, C. Cinnabar in mesoamerica: poisoning or mortuary ritual?. J. Archaeol. Sci. 49, 48–56 (2014).
Google Scholar
Bocca, B. et al. Metals in bones of the middle-aged inhabitants of Sardinia island (Italy) to assess nutrition and environmental exposure. Environ. Sci. Pollut. Res. 25, 8404–8414 (2018).
Google Scholar
Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Ufer, K. & Kaufhold, S. Natural incorporation of mercury in bone. J. Trace Elements Med. Biol. 67, 126797 (2021).
Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Jimenez-Lopez, J. C. & Romano-Pacheco, A. Ageing and preservation of HgS-enriched ancient human remains deposited in confinement. J. Archaeol. Sci.: Rep. 18, 562–567 (2018).
Cervini-Silva, J. et al. Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains. Geomicrobiol. J. 30, 566–577 (2013).
Google Scholar
Emslie, S. D. et al. Mercury in archaeological human bone: biogenic or diagenetic?. J. Archaeol. Sci. 108, 104969 (2019).
Google Scholar
Kepa, M. et al. Analysis of mercury levels in historical bone material from syphilitic subjects–pilot studies (short report). Anthropol. Anz. 69, 367–377 (2012).
Google Scholar
Ochoa-Lugo, M. et al. The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological Hg-enriched bone remains. J. Archaeol. Sci.: Rep. 15, 213–218 (2017).
Panova, T. D., Dmitriev, AYu., Borzakov, S. B. & Hramco, C. Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow Kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR. Phys. Part. Nuclei Lett. 15, 127–134 (2018).
Google Scholar
Rasmussen, K. L. et al. Investigations of the relics and altar materials relating to the apostles St James and St Philip at the Basilica dei Santi XII Apostoli in Rome. Herit. Sci. 9, 14 (2021).
Google Scholar
Rasmussen, K. L. et al. Comparison of trace element chemistry in human bones interred in two private chapels attached to Franciscan friaries in Italy and Denmark: An investigation of social stratification in two medieval and post-medieval societies. Heritage Sci. 8, 65 (2020).
Google Scholar
Rasmussen, K. L. et al. On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals. Am. J. Phys. Anthropol. 162, 90–102 (2017).
Google Scholar
Rasmussen, K. L., Skytte, L., Jensen, A. J. & Boldsen, J. L. Comparison of mercury and lead levels in the bones of rural and urban populations in Southern Denmark and Northern Germany during the Middle Ages. J. Archaeol. Sci.: Rep. 3, 358–370 (2015).
Rasmussen, K. L. et al. Was he murdered or was he not?—Part I: Analyses of mercury in the remains of Tycho Brahe. Archaeometry 55, 1187–1195 (2013).
Google Scholar
Rasmussen, K. L. et al. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark—The chemical life history hypothesis. Herit. Sci. 1, 10 (2013).
Google Scholar
Torino, M. et al. Convento di San Francesco a Folloni: The function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 3, 27 (2015).
Google Scholar
Walser, J. W., Kristjánsdóttir, S., Gowland, R. & Desnica, N. Volcanoes, medicine, and monasticism: Investigating mercury exposure in medieval Iceland. Int. J. Osteoarchaeol. 29, 48–61 (2019).
Google Scholar
Rasmussen, K. L. et al. Mercury levels in Danish Medieval human bones. J. Archaeol. Sci. 35, 2295–2306 (2008).
Google Scholar
Armesto, A. G. et al. Total mercury distribution among soil aggregate size fractions in a temperate forest podzol. Span. J. Soil Sci. 8(1), 57–73 (2018).
do Valle, C. M., Santana, G. P., Augusti, R., Egreja Filho, F. B. & Windmöller, C. C. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere 58, 779–792 (2005).
Fiorentino, J. C., Enzweiler, J. & Angélica, R. S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: Evidence of external input. Water Air Soil Pollut. 221, 63–75 (2011).
Google Scholar
Roulet, M. et al. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil1The present investigation is part of an ongoing study, the CARUSO project (IDRC-UFPa-UQAM), initiated to determine the sources, fate, and health effects of MeHg in the Lower Tapajós area.1. Sci. Total Environ. 223, 1–24 (1998).
Qin, F. et al. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J. Geochem. Expl. 138, 33–49 (2014).
Google Scholar
Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).
Google Scholar
Janaway, R. C., Percival, S. L. & Wilson, A. S. Decomposition of Human Remains. In Microbiology and Aging: Clinical Manifestations (ed. Percival, S. L.) 313–334 (Humana Press, London, 2009). https://doi.org/10.1007/978-1-59745-327-1_14.
Google Scholar
Obrist, D., Johnson, D. W. & Lindberg, S. E. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences 6, 765–777 (2009).
Google Scholar
Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes—A review of the literature. Water Air Soil Pollut. 56, 667–680 (1991).
Google Scholar
Taboada, T., Cortizas, A. M., García, C. & García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131, 218–236 (2006).
Google Scholar
Babuśka-Roczniak, M. et al. Occurrence of mercury in the knee joint tissues. Pol. Ann. Med. 28, 39–44 (2021).
Domingo, J. L., García, F., Nadal, M. & Schuhmacher, M. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator. Environ. Res. 154, 269–274 (2017).
Google Scholar
López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51 (2016).
Taboada, T., Martínez Cortizas, A., García, C. & García-Rodeja, E. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ. 356, 192–206 (2006).
Windmöller, C. C., Durão, W. A., de Oliveira, A. & do Valle, C. M. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): Implications for the mercury cycle. Ecotoxicol. Environ. Saf. 112, 201–211 (2015).
Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra) II. Cuadernos de estudios gallegos 22, 5–23 (1967).
Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra). Cuadernos de estudios gallegos 16, 141–158 (1961).
Kaal, J., López-Costas, O. & Martínez Cortizas, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10 (2016).
López Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romana y medieval gallega. (Universidad de Granada, 2012).
López-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário/Quaternary Studies 55–67 (2015) https://doi.org/10.30893/eq.v0i12.111.
López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154 (2016).
Google Scholar
García López, Z., López Costas, O. & Martínez Cortizas, A. Análisis de sedimentos asociados a restos humanos de la Necrópolis de A Lanzada y Adro Vello (Pontevedra). (2019).
Rodríguez Martínez, R. M. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).
Brickley, M. & McKinley, J. I. Determination of sex from archaeological skeletal material and assessment of parturition. in Guidelines to the Standards for Recording Human Remains. 23–25 (BABAO, Dept. of Archaeology, University of Southampton. Institute of Field Archaeologist, University of Reading, 2004).
López Costas, O. et al. Informe final: Estudio de esqueletos humanos y de secuencias edafo-sedimentárias del yacimiento de A Lanzada. En: Rodríguez Martínez, R.M., 2017. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).
Cheburkin, A. K. & Shotyk, W. Determination of trace elements in aqueous solutions using the EMMA miniprobe XRF analyzer. X-Ray Spectrom. 28, 379–383 (1999).
Google Scholar
Cheburkin, A. K. & Shotyk, W. High-sensitivity XRF analyzer (OLIVIA) using a multi-crystal pyrographite assembly to reduce the continuous background. X-Ray Spectrom. 28, 145–148 (1999).
Google Scholar
Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 58, 109–130 (2001).
Google Scholar
Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Comput. Stat. Data Anal. 56, 2688–2704 (2012).
Google Scholar
Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Mathe. Geol. 35, 279–300 (2003).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).
Filzmoser, P., Hron, K. & Templ, M. Applied Compositional Data Analysis. With Worked Examples (Springer, 2018).
Google Scholar
Garrett, R. G. rgr: Applied Geochemistry EDA. (2018).
Bertrand, F. & Maumy-Bertrand, M. Partial Least Squares Regression for Generalized Linear Models. (2019).
Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google Scholar
Punta A Lanzada, O Grove (Galicia, Spain) 42°25′44.61″N 8°52′29.31″W elev 16 m eye alt 585m. Google Earth. Jully 18, 2020. March 20, 2021. https://bit.ly/3FwpZrE.
A Lanzada site (Galicia, Spain) 42°25′44.64″N 8°52″29.42″W elev 16m eye alt 549m. Google Earth. Jully 18, 2020. October 12, 2021. https://bit.ly/3BBqxKy.
Source: Ecology - nature.com