in

Approaching mercury distribution in burial environment using PLS-R modelling

  • 1.

    Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. In Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 181–194 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-809665-9.09985-7.

    Chapter 

    Google Scholar 

  • 2.

    Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst. 29, 543–566 (1998).

    Article 

    Google Scholar 

  • 3.

    Pushie, M. J., Pickering, I. J., Korbas, M., Hackett, M. J. & George, G. N. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 114, 8499–8541 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    WHO. Exposure to Mercury: a Major Public Health Concern. (2007).

  • 5.

    Berlin, M., Zalups, R. K. & Fowler, B. A. Chapter 46—Mercury. In Handbook on the Toxicology of Metals (Fourth Edition) (eds Nordberg, G. F. et al.) 1013–1075 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-444-59453-2.00046-9.

    Chapter 

    Google Scholar 

  • 6.

    Clarkson, T. W. The Toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34, 369–403 (1997).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Abass, K. et al. Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans. Environ. Int. 114, 1–11 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Liu, G., Cai, Y., O’Driscoll, N., Feng, X. & Jiang, G. Overview of mercury in the environment. In Environmental Chemistry and Toxicology of Mercury (eds Liu, G. et al.) 1–12 (Wiley, 2011). https://doi.org/10.1002/9781118146644.ch1.

    Chapter 

    Google Scholar 

  • 9.

    García, F., Ortega, A., Domingo, J. L. & Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona county, Spain. J. Environ. Sci. Health Part A 36, 1767–1786 (2001).

    Article 

    Google Scholar 

  • 10.

    Clarkson, T. W. & Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Holmes, P., James, K. A. F. & Levy, L. S. Is low-level environmental mercury exposure of concern to human health?. Sci. Total Environ. 408, 171–182 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Pasetto, R., Martin-Olmedo, P., Martuzzi, M. & Iavarone, I. Exploring available options in characterising the health impact of industrially contaminated sites. Ann. Ist Super Sanita 52, 476–482 (2016).

    PubMed 

    Google Scholar 

  • 13.

    Álvarez-Fernández, N., Martínez Cortizas, A. & López-Costas, O. Atmospheric mercury pollution deciphered through archaeological bones. J. Archaeol. Sci. 119, 105159 (2020).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Cooke, C. A., Martínez-Cortizas, A., Bindler, R. & Sexauer Gustin, M. Environmental archives of atmospheric Hg deposition—A review. Sci. Total Environ. 709, 134800 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Leblanc, M., Morales, J. A., Borrego, J. & Elbaz-Poulichet, F. 4,500-year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 95, 655–662 (2000).

    CAS 

    Google Scholar 

  • 16.

    Cooke, C. A., Balcom, P. H., Biester, H. & Wolfe, A. P. Over three millennia of mercury pollution in the Peruvian Andes. PNAS 106, 8830–8834 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Hunt Ortiz, M. A., Consuegra, S., Díaz del Río, P., Hurtado Pérez, V. & Montero Ruiz, I. Neolithic and Chalcolithic –VI to III millennia BC– use of cinnabar (HgS) in the Iberian Peninsula: analytical identification and lead isotope data for an early mineral exploitation of the Almadén (Ciudad Real, Spain) mining district. (2011).

  • 18.

    Martı́nez-Cortizas, A., Pontevedra-Pombal, X., Garcı́a-Rodeja, E., Nóvoa-Muñoz, J. C. & Shotyk, W. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 284, 939–942 (1999).

  • 19.

    Martínez Cortizas, A., Peiteado Varela, E., Bindler, R., Biester, H. & Cheburkin, A. Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochimica et Cosmochimica Acta 82, 68–78 (2012).

  • 20.

    López-Costas, O. et al. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Sci. Total Environ. 710, 136319 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Yamada, M. et al. Accumulation of mercury in excavated bones of two natives in Japan. Sci. Total Environ. 162, 253–256 (1995).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Emslie, S. D. et al. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci. Rep. 5, 14679 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Alexandrovskaya, E. & Alexandrovskiy, A. Radiocarbon data and anthropochemistry of ancient Moscow. Geochronometria 24, 87–95 (2005).

    Google Scholar 

  • 25.

    Ávila, A., Mansilla, J., Bosch, P. & Pijoan, C. Cinnabar in mesoamerica: poisoning or mortuary ritual?. J. Archaeol. Sci. 49, 48–56 (2014).

    Article 
    CAS 

    Google Scholar 

  • 26.

    Bocca, B. et al. Metals in bones of the middle-aged inhabitants of Sardinia island (Italy) to assess nutrition and environmental exposure. Environ. Sci. Pollut. Res. 25, 8404–8414 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Ufer, K. & Kaufhold, S. Natural incorporation of mercury in bone. J. Trace Elements Med. Biol. 67, 126797 (2021).

  • 28.

    Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Jimenez-Lopez, J. C. & Romano-Pacheco, A. Ageing and preservation of HgS-enriched ancient human remains deposited in confinement. J. Archaeol. Sci.: Rep. 18, 562–567 (2018).

  • 29.

    Cervini-Silva, J. et al. Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains. Geomicrobiol. J. 30, 566–577 (2013).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Emslie, S. D. et al. Mercury in archaeological human bone: biogenic or diagenetic?. J. Archaeol. Sci. 108, 104969 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Kepa, M. et al. Analysis of mercury levels in historical bone material from syphilitic subjects–pilot studies (short report). Anthropol. Anz. 69, 367–377 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 32.

    Ochoa-Lugo, M. et al. The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological Hg-enriched bone remains. J. Archaeol. Sci.: Rep. 15, 213–218 (2017).

    Google Scholar 

  • 33.

    Panova, T. D., Dmitriev, AYu., Borzakov, S. B. & Hramco, C. Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow Kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR. Phys. Part. Nuclei Lett. 15, 127–134 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Rasmussen, K. L. et al. Investigations of the relics and altar materials relating to the apostles St James and St Philip at the Basilica dei Santi XII Apostoli in Rome. Herit. Sci. 9, 14 (2021).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Rasmussen, K. L. et al. Comparison of trace element chemistry in human bones interred in two private chapels attached to Franciscan friaries in Italy and Denmark: An investigation of social stratification in two medieval and post-medieval societies. Heritage Sci. 8, 65 (2020).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Rasmussen, K. L. et al. On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals. Am. J. Phys. Anthropol. 162, 90–102 (2017).

    Article 

    Google Scholar 

  • 37.

    Rasmussen, K. L., Skytte, L., Jensen, A. J. & Boldsen, J. L. Comparison of mercury and lead levels in the bones of rural and urban populations in Southern Denmark and Northern Germany during the Middle Ages. J. Archaeol. Sci.: Rep. 3, 358–370 (2015).

    Google Scholar 

  • 38.

    Rasmussen, K. L. et al. Was he murdered or was he not?—Part I: Analyses of mercury in the remains of Tycho Brahe. Archaeometry 55, 1187–1195 (2013).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Rasmussen, K. L. et al. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark—The chemical life history hypothesis. Herit. Sci. 1, 10 (2013).

    Article 
    CAS 

    Google Scholar 

  • 40.

    Torino, M. et al. Convento di San Francesco a Folloni: The function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 3, 27 (2015).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Walser, J. W., Kristjánsdóttir, S., Gowland, R. & Desnica, N. Volcanoes, medicine, and monasticism: Investigating mercury exposure in medieval Iceland. Int. J. Osteoarchaeol. 29, 48–61 (2019).

    Article 

    Google Scholar 

  • 42.

    Rasmussen, K. L. et al. Mercury levels in Danish Medieval human bones. J. Archaeol. Sci. 35, 2295–2306 (2008).

    Article 

    Google Scholar 

  • 43.

    Armesto, A. G. et al. Total mercury distribution among soil aggregate size fractions in a temperate forest podzol. Span. J. Soil Sci. 8(1), 57–73 (2018).

    Google Scholar 

  • 44.

    do Valle, C. M., Santana, G. P., Augusti, R., Egreja Filho, F. B. & Windmöller, C. C. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere 58, 779–792 (2005).

  • 45.

    Fiorentino, J. C., Enzweiler, J. & Angélica, R. S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: Evidence of external input. Water Air Soil Pollut. 221, 63–75 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Roulet, M. et al. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil1The present investigation is part of an ongoing study, the CARUSO project (IDRC-UFPa-UQAM), initiated to determine the sources, fate, and health effects of MeHg in the Lower Tapajós area.1. Sci. Total Environ. 223, 1–24 (1998).

  • 47.

    Qin, F. et al. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J. Geochem. Expl. 138, 33–49 (2014).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Janaway, R. C., Percival, S. L. & Wilson, A. S. Decomposition of Human Remains. In Microbiology and Aging: Clinical Manifestations (ed. Percival, S. L.) 313–334 (Humana Press, London, 2009). https://doi.org/10.1007/978-1-59745-327-1_14.

    Chapter 

    Google Scholar 

  • 50.

    Obrist, D., Johnson, D. W. & Lindberg, S. E. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences 6, 765–777 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 51.

    Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes—A review of the literature. Water Air Soil Pollut. 56, 667–680 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Taboada, T., Cortizas, A. M., García, C. & García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131, 218–236 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Babuśka-Roczniak, M. et al. Occurrence of mercury in the knee joint tissues. Pol. Ann. Med. 28, 39–44 (2021).

    Google Scholar 

  • 54.

    Domingo, J. L., García, F., Nadal, M. & Schuhmacher, M. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator. Environ. Res. 154, 269–274 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51 (2016).

  • 56.

    Taboada, T., Martínez Cortizas, A., García, C. & García-Rodeja, E. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ. 356, 192–206 (2006).

  • 57.

    Windmöller, C. C., Durão, W. A., de Oliveira, A. & do Valle, C. M. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): Implications for the mercury cycle. Ecotoxicol. Environ. Saf. 112, 201–211 (2015).

  • 58.

    Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra) II. Cuadernos de estudios gallegos 22, 5–23 (1967).

  • 59.

    Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra). Cuadernos de estudios gallegos 16, 141–158 (1961).

  • 60.

    Kaal, J., López-Costas, O. & Martínez Cortizas, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10 (2016).

  • 61.

    López Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romana y medieval gallega. (Universidad de Granada, 2012).

  • 62.

    López-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário/Quaternary Studies 55–67 (2015) https://doi.org/10.30893/eq.v0i12.111.

  • 63.

    López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    García López, Z., López Costas, O. & Martínez Cortizas, A. Análisis de sedimentos asociados a restos humanos de la Necrópolis de A Lanzada y Adro Vello (Pontevedra). (2019).

  • 65.

    Rodríguez Martínez, R. M. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).

  • 66.

    Brickley, M. & McKinley, J. I. Determination of sex from archaeological skeletal material and assessment of parturition. in Guidelines to the Standards for Recording Human Remains. 23–25 (BABAO, Dept. of Archaeology, University of Southampton. Institute of Field Archaeologist, University of Reading, 2004).

  • 67.

    López Costas, O. et al. Informe final: Estudio de esqueletos humanos y de secuencias edafo-sedimentárias del yacimiento de A Lanzada. En: Rodríguez Martínez, R.M., 2017. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).

  • 68.

    Cheburkin, A. K. & Shotyk, W. Determination of trace elements in aqueous solutions using the EMMA miniprobe XRF analyzer. X-Ray Spectrom. 28, 379–383 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 69.

    Cheburkin, A. K. & Shotyk, W. High-sensitivity XRF analyzer (OLIVIA) using a multi-crystal pyrographite assembly to reduce the continuous background. X-Ray Spectrom. 28, 145–148 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 58, 109–130 (2001).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Comput. Stat. Data Anal. 56, 2688–2704 (2012).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 72.

    Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Mathe. Geol. 35, 279–300 (2003).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 73.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).

  • 74.

    Filzmoser, P., Hron, K. & Templ, M. Applied Compositional Data Analysis. With Worked Examples (Springer, 2018).

    MATH 
    Book 

    Google Scholar 

  • 75.

    Garrett, R. G. rgr: Applied Geochemistry EDA. (2018).

  • 76.

    Bertrand, F. & Maumy-Bertrand, M. Partial Least Squares Regression for Generalized Linear Models. (2019).

  • 77.

    Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020).

  • 78.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

    MATH 
    Book 

    Google Scholar 

  • 79.

    Punta A Lanzada, O Grove (Galicia, Spain) 42°25′44.61″N 8°52′29.31″W elev 16 m eye alt 585m. Google Earth. Jully 18, 2020. March 20, 2021. https://bit.ly/3FwpZrE.

  • 80.

    A Lanzada site (Galicia, Spain) 42°25′44.64″N 8°52″29.42″W elev 16m eye alt 549m. Google Earth. Jully 18, 2020. October 12, 2021. https://bit.ly/3BBqxKy.


  • Source: Ecology - nature.com

    MIT Energy Initiative awards seven Seed Fund grants for early-stage energy research

    Worker-dependent gut symbiosis in an ant