Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics 617 (Cambridge University Press, 2002).
Google Scholar
Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. PNAS 101, 15261–15264 (2004).
Google Scholar
Ahmadi, M. et al. Evolutionary applications of phylo-genetically-informed ecological niche modelling (ENM) to explore cryptic diversification over cryptic refugia. Mol. Phylogenet. Evol. 127, 712–722 (2018).
Google Scholar
Ashrafzadeh, M. R. et al. Large-scale mitochondrial DNA analysis reveals new light on the phylogeography of Central and Eastern-European Brown hare (Lepus europaeus Pallas, 1778). PLoS ONE 13, e0204653 (2018).
Google Scholar
Tóth, B. et al. Genetic diversity and structure of common carp (Cyprinus carpio L.) in the Centre of Carpathian Basin: Implications for conservation. Genes 11, 1268 (2020).
Google Scholar
Broquet, T., Ray, N., Petit, E., Fryxell, J. M. & Burel, F. Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landsc. Ecol. 21, 877–889 (2006).
Google Scholar
Cushman, S. A., McKelvey, K. S., Hayden, J. & Schwartz, M. K. Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am. Nat. 168, 486–499 (2006).
Google Scholar
Khosravi, R. et al. Effect of landscape features on genetic structure of the goitered gazelle (Gazella subgutturosa) in Central Iran. Conserv. Genet. 19, 323–336 (2018).
Google Scholar
Adavodi, R., Khosravi, R., Cushman, S. A. & Kaboli, M. Topographical features and forest cover influence landscape connectivity and gene flow of the Caucasian pit viper, Gloydius caucasicus (Nikolsky, 1916), Iran. Landsc. Ecol. 34, 2615–2630 (2019).
Google Scholar
Moussy, C. et al. Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Rev. 43, 183–195 (2013).
Google Scholar
Theodoridis, S. et al. Evolutionary history and past climate change shape the distribution of genetic diversity in terrestrial mammals. Nat. Commun. 11, 1–11 (2020).
Google Scholar
Barilani, M. et al. Detecting introgressive hybridisation in rock partridge populations (Alectoris graeca) in Greece through Bayesian admixture analyses of multilocus genotypes. Conserv. Genet. 8, 343–354 (2007).
Google Scholar
Randi, E. Detecting hybridization between wild species and their domesticated relatives. Mol. Ecol. 17, 285–293 (2008).
Google Scholar
Kusza, S., Ashrafzadeh, M. R., Tóth, B. & Jávor, A. Maternal genetic variation in the northeastern Hungarian fallow deer (Dama dama) population. Mamm. Biol. 93, 21–28 (2018).
Google Scholar
Laikre, L., Schwartz, M. K., Waples, R. S., Ryman, N. & GeM Working Group. Compromising genetic diversity in the wild: Unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 25, 520–529 (2010).
Google Scholar
Söderquist, P. et al. Admixture between released and wild game birds: a changing genetic landscape in European mallards (Anas platyrhynchos). Eur. J. Wildl. Res. 63, 98 (2017).
Google Scholar
Robertson, P. A. et al. Pheasant release in Great Britain: Long-term and large-scale changes in the survival of a managed bird. Eur. J. Wildlife Res. 63, 100 (2017).
Google Scholar
Mank, J. E., Carlson, J. E. & Brittingham, M. C. A century of hybridization: Decreasing genetic distance between American black ducks and mallards. Conserv. Genet. 5, 395–403 (2004).
Google Scholar
Blanco-Aguiar, J. A. et al. Assessment of game restocking contributions to anthropogenic hybridization: The case of the Iberian red-legged partridge. Anim. Conserv. 11, 535–545 (2008).
Google Scholar
Sanchez-Donoso, I. et al. Are farm-reared quails for game restocking really common quails (Coturnix coturnix)? a genetic approach. PLoS ONE 7, e39031 (2012).
Google Scholar
Liu, Y. et al. Genome assembly of the common pheasant Phasianus colchicus: A model for speciation and ecological genomics. Genome Biol. Evol. 11, 3326–3331 (2019).
Google Scholar
Braasch, T., Pes, T., Michel, S. & Jacken, H. The subspecies of the common pheasant Phasianus colchicus in the wild and captivity. Int. J. Galliformes Conserv. 2, 6–13 (2011).
Robertson, D. H. P. & Hill, D. A. The Pheasant: Ecology, Management and Conservation 281 (Blackwell Scientific Publication, 1988).
Hill, D. A. & Robertson, P. Hand reared pheasants: how do they compare with wild birds. Game Conserv. Ann. Rep. 17, 76–84 (1986).
Pfarr, J. True Pheasants: A Noble Quarry 248 (Hancock House Publishers Ltd, 2012).
BirdLife International. Phasianus colchicus. The IUCN Red List of Threatened Species 2016: e.T45100023A85926819. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T45100023A85926819.en
Ashoori, A. et al. Habitat modeling of the common pheasant Phasianus colchicus (Galliformes: Phasianidae) in a highly modified landscape: application of species distribution models in the study of a poorly documented bird in Iran. Eur. Zool. J. 85, 372–380 (2018).
Google Scholar
Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World: New World Vultures to Guineafowl Vol. 2, 638 (Lynx Edicions, 1994).
Boev, Z. N. Late Pleistocene and Holocene avifauna from three caves in the vicinity of Tran (Pernik District-W Bulgaria). In Proceedings of the First National Conference on Environment and Cultural Heritage in Karst, Sofia, Bulgaria, 10–12 November 2000 (eds Delchev, P. et al.) (Earth and Man National Museum, Association of Environment and Cultural Heritage in Karst, 2001).
Qu, H. et al. Subspecies boundaries and recent evolution history of the common pheasant (Phasianus colchicus) across China. Biochem. Syst. Ecol. 71, 155–162 (2017).
Google Scholar
Kayvanfar, N., Aliabadian, M., Niu, X., Zhang, Z. & Liu, Y. Phylogeography of the common pheasant Phasianus colchicus. Ibis 159, 430–442 (2017).
Google Scholar
Todesco, M. et al. Hybridization and extinction. Evol. Appl. 9, 892–908 (2016).
Google Scholar
Santilli, F. & Bagliacca, M. Factors influencing pheasant Phasianus colchicus harvesting in Tuscany, Italy. Wildl. Biol. 14, 281–287 (2008).
Google Scholar
Lavadinović, V., Beuković, D. & Popović, Z. Common Pheasant (Phasianus colchicus L.1758) management in Serbia. Contemp. Agric. 68, 71–79 (2019).
Google Scholar
Fenberg, P. B. & Roy, K. Ecological and evolutionary consequences of size-selective harvesting: How much do we know?. Mol. Ecol. 17, 209–220 (2008).
Google Scholar
Allendorf, F. W. & Hard, J. J. Human-induced evolution caused by unnatural selection through harvest of wild animals. PNAS 106, 9987–9994 (2009).
Google Scholar
Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. PNAS 106, 952–954 (2009).
Google Scholar
Madden, J. R. & Whiteside, M. A. Selection on behavioural traits during ‘unselective’harvesting means that shy pheasants better survive a hunting season. Anim. Behav. 87, 129–135 (2014).
Google Scholar
Csányi, S. The effect of hand-reared pheasants on the wild population in Hungary: A modelling approach. Hung. Small Game B. 5, 71–82 (2000).
Queirós, J., Gortázar, C. & Alves, P. C. Deciphering anthropogenic effects on the genetic background of the Red deer in the Iberian Peninsula. Front. Ecol. Evol. 8, 147 (2020).
Google Scholar
Giesel, J. T., Brazeau, D., Koppelman, R. & Shiver, D. Ring-necked pheasant population genetic structure. J. Wildl. Manag. 61, 1332–1338 (1997).
Google Scholar
Qu, J., Liu, N., Bao, X. & Wang, X. Phylogeography of the ring-necked pheasant (Phasianus colchicus) in China. Mol. Phylogenet. Evol. 52, 125–132 (2009).
Google Scholar
Liu, Y., Zhan, X., Wang, N., Chang, J. & Zhang, Z. Effect of geological vicariance on mitochondrial DNA differentiation in Common Pheasant populations of the Loess Plateau and eastern China. Mol. Phylogenet. Evol. 55, 409–417 (2010).
Google Scholar
Zhang, L., An, B., Backström, N. & Liu, N. Phylogeography-based delimitation of subspecies boundaries in the Common Pheasant (Phasianus colchicus). Biochem. Genet. 52, 38–51 (2014).
Google Scholar
Liu, S. et al. Regional drivers of diversification in the late Quaternary in a widely distributed generalist species, the common pheasant Phasianus colchicus. J. Biogeogr. 47, 2714–2727 (2020).
Google Scholar
Avise, J. C. Phylogeography: The History and Formation of Species 464 (Harvard University Press, 2000).
Google Scholar
Corin, S. E., Lester, P. J., Abbott, K. L. & Ritchie, P. A. Inferring historical introduction pathways with mitochondrial DNA: the case of introduced Argentine ants (Linepithema humile) into New Zealand. Divers. Distrib. 13, 510–518 (2007).
Google Scholar
Oskarsson, M. C. et al. Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proc. R. Soc. B. 279, 967–974 (2012).
Google Scholar
Garrett, L. J. et al. Spatio-temporal processes drive fine-scale genetic structure in an otherwise panmictic seabird population. Sci. Rep. 10, 1–12 (2020).
Google Scholar
Brito, P. H. Contrasting patterns of mitochondrial and microsatellite genetic structure among Western European populations of tawny owls (Strix aluco). Mol. Ecol. 16, 3423–3437 (2007).
Google Scholar
Suárez, N. M. et al. Phylogeography and genetic struc-ture of the Canarian common chaffinch (Fringilla coelebs) inferred with mtDNA and microsatellite loci. Mol. Phylogenet. Evol. 53, 556–564 (2009).
Google Scholar
Piry, S., Luikart, G. & Cornuet, J. M. Computer note. BOTTLENECK: A computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90, 502–503 (1999).
Google Scholar
Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).
Google Scholar
Slatkin, M. & Hudson, R. R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562 (1991).
Google Scholar
Wang, B. et al. Development and characterization of novel microsatellite markers for the Common Pheasant (Phasianus colchicus) using RAD-seq. Avian Res. 8, 4 (2017).
Google Scholar
Grant, W. A. S. & Bowen, B. W. Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. J. Hered. 89, 415–426 (1998).
Google Scholar
Barrowclough, G. F., Johnson, N. K. & Zink, R. M. In Current Ornithology Vol. 2 (ed. Johnston, R. F.) 135–154 (Springer, 1985).
Google Scholar
Zink, R. M. Phylogeographic studies of North American birds. In Avian Molecular Evolution and Systematics (ed. Mindell, D. P.) 301–324 (Academic Press, 1997).
Google Scholar
Payne, R. B. Natal dispersal and population structure in a migratory songbird, the Indigo Bunting. Evolution 45, 49–62 (1991).
Google Scholar
Stenzel, L. E. et al. Long-distance breeding dispersal of snowy plovers in western North America. J. Anim. Ecol. 63, 887–902 (1994).
Google Scholar
Zhu, C. et al. Genetic structure and population dynamics of the silver pheasant (Lophura nycthemera) in southern China. Turk. J. Zool. 44, 31–43 (2020).
Google Scholar
Faragó, S. Élőhelyfejlesztés az Apróvad-Gazdálkodásban: A Fenntartható Apróvad-Gazdálkodás Környezeti Alapjai 341 (Mezőgazda Kiadó, 1997).
Faragó, S. & Náhlik, A. A Vadállomány Szabályozása: A Fenntartható Vadgazdálkodás Populációökológiai Alapjai 347 (Mezőgazda kiadó, 2011).
Randi, E. & Lucchini, V. Organization and evolution of the mitochondrial DNA control region in the avian genus Alector-is. J. Mol. Evol. 47, 449–462 (1998).
Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
Google Scholar
Xia, X. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. J. Hered. 108, 431–437 (2017).
Google Scholar
Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).
Google Scholar
Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).
Google Scholar
Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
Google Scholar
Hasegawa, M., Kishino, H. & Yano, T. A. Dating of the humanape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).
Google Scholar
Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
Google Scholar
Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).
Google Scholar
Corander, J., Marttinen, P., Sirén, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic struc-tures of populations. BMC Bioinform. 9, 1–14 (2008).
Google Scholar
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).
Google Scholar
Heled, J. & Drummond, A. J. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).
Google Scholar
Team, R.C. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).
Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).
Google Scholar
Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).
Google Scholar
Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
Google Scholar
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).
Google Scholar
Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Langguth, T. et al. Genetic structure and phylogeogra-phy of a European flagship species, the white-tailed sea eagle Haliaeetus albicilla. J. Avian Biol. 44, 263–271 (2013).
Google Scholar
Väli, Ü., Dombrovski, V., Dzmitranok, M., Maciorowski, G. & Meyburg, B. U. High genetic diversity and low differentia-tion retained in the European fragmented and declining Greater Spotted Eagle (Clanga clanga) population. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
Google Scholar
Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes. 4, 137–138 (2004).
Google Scholar
Corander, J., Sirén, J. & Arjas, E. Bayesian spatial modeling of genetic population structure. Comput. Stat. 23, 111–129 (2008).
Google Scholar
Galpern, P., Peres-Neto, P. R., Polfus, J. & Manseau, M. MEMGENE: Spatial pattern detection in genetic distance data. Methods Ecol. Evol. 5, 1116–1120 (2014).
Google Scholar
Peakall, R., Ruibal, M. & Lindenmayer, D. B. Spatial autocorrelation analysis offers new insights into gene flow in the Aus-tralian bush rat, Rattus fuscipes. Evolution 57, 1182–1195 (2003).
Google Scholar
Mullins, J. et al. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland. Acta Theriol. 59, 367–376 (2014).
Google Scholar
Oksanen, J. Vegan: R Functions for Vegetation Ecologists. http://cc.oulu.fi/_jarioksa/softhelp/vegan.html. (2005).
Wright, S. Isolation by distance. Genetics 28, 114 (1943).
Google Scholar
Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and re-search: An update. Bioinformatics 28, 2537–2539 (2012).
Google Scholar
Goudet, J. FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices, Version 2.9. 3. http://www2.unil.ch/popgen/softwares/fstat.htm (2001).
Yeh, F. C. et al. POPGENE version 1.32. Computer Program and Documentation Distributed by the Author. http://www.ualberta.ca/~fyeh/popgene.html (accessed on 23 January 2013).
Belkhir, K., Borsa, P., Chikhi, L. & Bonhomme, F. Genetix 4.05: WindowsTM Software for Population Genetics (Laboratoire Genome de Populations University of Montpelier II, 1996).
Luikart, G., Sherwin, W. B., Steele, B. M. & Allendorf, F. W. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol. 7, 963–974 (1998).
Google Scholar
Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247 (1998).
Google Scholar
Source: Ecology - nature.com