in

Cenozoic climatic changes drive evolution and dispersal of coastal benthic foraminifera in the Southern Ocean

  • 1.

    Thomson, M. R. A. Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep Sea Res. II 51, 1467–1487 (2004).

    Article 
    ADS 

    Google Scholar 

  • 2.

    Maldonado, A. et al. A model of oceanic development by ridge jumping: Opening of the Scotia Sea. Glob. Planet. Change 123, 152–173 (2014).

    Article 
    ADS 

    Google Scholar 

  • 3.

    Crame, J. A. Key stages in the evolution of the Antarctic marine fauna. J. Biogeogr. 45, 986–994 (2018).

    Article 

    Google Scholar 

  • 4.

    Scher, H. D. & Martin, E. E. Timing and climatic consequences of the opening of the Drake Passage. Science 312, 428–430 (2006).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 5.

    Eagles, G., Livermore, R. & Morris, P. Small basins in the Scotia Sea: the Eocene Drake passage gateway. Earth Planet. Sci. Lett. 242, 343–353 (2006).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 6.

    De Conto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421, 245–249 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 7.

    Anderson, J. B. et al. Progressive Cenozoic cooling and the demise of Antarctica’s last refugium. Proc. Natl. Acad. Sci. USA. 108, 11356–11360 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 8.

    Arntz, W. E. Magellan-Antarctic: ecosystems that drifted apart. Summary review. Sci. Mar. 3(Suppl. 1), 503–511 (1999).

    Article 

    Google Scholar 

  • 9.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and Aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 10.

    Dalziel, I. W. D. et al. A potential barrier to deep Antarctic circumpolar flow until the Late Miocene?. Geology 41, 947–950 (2013).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 11.

    Anderson, J. B. et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM. Quat. Sci. Rev. 100, 31–54 (2014).

    Article 
    ADS 

    Google Scholar 

  • 12.

    Klages, J. P. et al. Limited grounding-line advance onto the West Antarctic continental shelf in the easternmost Amundsen Sea Embayment during the last glacial period. PLoS ONE 12, e0181593 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Thatje, S., Hillenbrand, C. D. & Larter, R. On the origin of Antarctic marine benthic community structure. Trends Ecol. Evol. 20, 534–540 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 14.

    Fraser, C., Terauds, A., Smellie, J. L., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl. Acad. Sci. USA. 111, 5634–5639 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 15.

    Lau, S. C. Y., Wilson, N. G., Silva, C. N. S. & Strugnell, J. M. Detecting glacial refugia in the Southern Ocean. Ecography 43, 1639–1656 (2020).

    Article 

    Google Scholar 

  • 16.

    Naish, T. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328 (2009).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 17.

    Clarke, A., Crame, J. A., Stromberg, J.-O. & Barker, P. F. The Southern Ocean benthic fauna and climate change: A historical perspective [and discussion]. Phil. Trans. R. Soc. B 338, 299–309 (1992).

    Article 
    ADS 

    Google Scholar 

  • 18.

    Clarke, A. & Crame, J. A. Evolutionary dynamics at high latitudes: speciation and extinction in polar marine faunas. Phil. Trans. R. Soc. B 365, 3655–3666 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Barnes, D. K. A. & Conlan, K. E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. B 362, 11–38 (2007).

    Article 

    Google Scholar 

  • 20.

    Crame, J. A. An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci. Mar. 63(Suppl 1), 1–14 (1999).

    Article 

    Google Scholar 

  • 21.

    Aronson, R. B. & Blake, D. B. Global climate change and the origin of modern benthic communities in Antarctica. Am. Zool. 41, 27–39 (2001).

    Google Scholar 

  • 22.

    Clarke, A., Aronson, R. B., Crame, A., Gili, J. M. & Blake, D. B. Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct. Sci. 16, 559–568 (2004).

    Article 
    ADS 

    Google Scholar 

  • 23.

    Aronson, R. B. et al. Climate change and trophic response of the Antarctic Bottom Fauna. PLoS ONE 4, e4385 (2009).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 24.

    Brandt, A. et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447, 307–311 (2007).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 25.

    Orsi, A. H., Whitworth, T. W. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res. I(42), 641–673 (1995).

    Article 

    Google Scholar 

  • 26.

    Mikhalevich, V. I. The general aspects of the distribution of Antarctic foraminifera. Micropaleontology 50, 179–194 (2004).

    Google Scholar 

  • 27.

    Gooday, A. J., Rothe, N., Bowser, S. S. & Pawlowski, J. Benthic foraminifera. Biogeographic atlas of the Southern Ocean (ed. De Broyer, C. et al.) 74–82 (SCAR Publications, 2014).

  • 28.

    Heron-Allen, E. & Earland, A. Foraminifera. Part I. The ice-free area of the Falkland Islands and adjacent seas. Discov. Rep. 4, 291–460 (1932).

    Google Scholar 

  • 29.

    Earland, A. Foraminifera, Part II, South Georgia. Discov. Rep. 7, 27–138 (1933).

    Google Scholar 

  • 30.

    Herb, R. Distribution of recent benthonic foraminifer in the Drake Passage. AGU Antarct. Res. Ser. 17, 251–300 (1971).

    Google Scholar 

  • 31.

    Thompson, L. Distribution of living benthic foraminifera, Isla de los Estados, Tierra del Fuego, Argentina. J. Foraminiferal Res. 8, 241–257 (1978).

    Article 
    ADS 

    Google Scholar 

  • 32.

    Dejardin, R. et al. “Live” stained) benthic foraminiferal living depths, stable isotopes, and taxonomy offshore South Georgia, Southern Ocean: Implications for calcification depths. J. Micropalaeontol. 37, 25–71 (2018).

    Article 
    ADS 

    Google Scholar 

  • 33.

    Arellano, F., Quezada, L. & Olave, C. Familia Cassidulinidae (Protozoa: Foraminiferida) en canales y fiordos patagónicos chilenos. An. Inst. Patagon. 39, 47–65 (2011).

    Article 
    CAS 

    Google Scholar 

  • 34.

    Hald, M. & Korsun, S. Distribution of modern benthic foraminifera from fjords of Svalbard, European Artic. J. Foraminiferal Res. 27, 101–122 (1997).

    Article 

    Google Scholar 

  • 35.

    Majewski, W., Bart, P. J. & McGlannan, A. J. Foraminiferal assemblages from ice-proximal paleo-settings in the Whales Deep Basin, eastern Ross Sea, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 493, 64–81 (2018).

    Article 

    Google Scholar 

  • 36.

    Majewski, W., Prothro, L. O., Simkins, L. M., Demianiuk, E. J. & Anderson, J. B. Foraminiferal patterns in deglacial sediment in the western Ross Sea, Antarctica: Life near grounding lines. Paleoceanogr. Paleoclimatol. 35, 003716 (2020).

    Article 

    Google Scholar 

  • 37.

    Majewski, W. & Anderson, J. B. Holocene foraminiferal assemblages from Firth of Tay, Antarctic Peninsula: Paleoclimate implications. Mar. Micropaleontol. 73, 135–147 (2009).

    Article 
    ADS 

    Google Scholar 

  • 38.

    Kilfeather, A. A. et al. Ice-stream retreat and ice-shelf history in Marguerite Trough, Antarctic Peninsula: Sedimentological and foraminiferal signatures. Geol. Soc. Am. Bull. 123, 997–1015 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 39.

    Hillenbrand, C. D. et al. West antarctic ice sheet retreat driven by Holocene warm water incursions. Nature 547, 43–48 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 40.

    Leckie, R. M. & Webb, P. N. Late Paleogene and early Neogene foraminifers of deep sea drilling project site 270, Ross Sea, Antarctica. Initial Reports of the Deep Sea Drilling Project. Leg 90 (ed. Kennett, J. P. et al.) 1093–1118 (US Government Printing Office, 1986).

  • 41.

    Coccioni, R. & Galeotti, S. Foraminiferal biostratigraphy and paleoecology of the CIROS-1 core from McMurdo Sound (Ross Sea, Antarctica). Terra Antartica 4, 103–117 (1997).

    Google Scholar 

  • 42.

    Webb, P.-N. & Strong, C. P. Recycled Pliocene foraminifera from the CRP-1 Quaternary succession. Terra Antartica 5, 473–478 (1998).

    Google Scholar 

  • 43.

    Patterson, M. O. & Ishman, S. E. Neogene benthic foraminiferal assemblages and paleoenvironmetal record for McMurdo Sound, Antarctica. Geosphere 8, 1331–1341 (2012).

    Article 

    Google Scholar 

  • 44.

    Gaździcki, A. & Webb, P. N. Foraminifera from the Pecten Conglomerate (Pliocene) of Cockburn Island, Antarctic Peninsula. Palaeontol. Pol. 55, 147–174 (1996).

    Google Scholar 

  • 45.

    Gaździcki, A. & Majewski, W. Foraminifera from the Eocene La Meseta Formation of Isla Marambio (Seymour Island), Antarctic Peninsula. Antarct. Sci. 24, 408–416 (2012).

    Article 
    ADS 

    Google Scholar 

  • 46.

    Caramés, A. & Concheyro, A. Late cenozoic foraminifera from diamictites of Cape Lamb, Vega Island, Antarctic Peninsula. Ameghiniana 50, 114–135 (2013).

    Article 

    Google Scholar 

  • 47.

    Majewski, W. & Gaździcki, A. Shallow water benthic foraminifera from the Polonez Cove Formation (lower Oligocene) of King George Island, West Antarctica. Mar. Micropaleontol. 111, 1–14 (2014).

    Article 
    ADS 

    Google Scholar 

  • 48.

    Quilty, P. G. Reworked Paleocene and Eocene Foraminifera, Mac. Robertson Shelf, East Antarctica paleoenvironmental implications. J. Foraminiferal Res. 31, 369–384 (2001).

    Article 

    Google Scholar 

  • 49.

    Quilty, P. G. Foraminifera from late Pliocene sediments of Heidemann Valley, Vestfold Hills, East Antarctica. J. Foraminiferal Res. 40, 193–205 (2010).

    Article 

    Google Scholar 

  • 50.

    Majewski, W., Tatur, A., Witkowski, J. & Gaździcki, A. Rich shallow-water benthic ecosystem in Late Miocene East Antarctica (Fisher Bench Fm, Prince Charles Mountains). Mar. Micropaleontol. 133, 40–49 (2017).

    Article 
    ADS 

    Google Scholar 

  • 51.

    Pawlowski, J., Holzmann, M. & Tyszka, J. New supraordinal classification of Foraminifera: Molecules meet morphology. Mar. Micropaleontol. 100, 1–10 (2013).

    Article 
    ADS 

    Google Scholar 

  • 52.

    Pawlowski, J. & Holzmann, M. A plea for DNA barcoding of foraminifera. Mar. Biodivers. 44, 213–221 (2014).

    Article 

    Google Scholar 

  • 53.

    Roberts, A. et al. A New integrated approach to taxonomy: The fusion of molecular and morphological systematics with type material in Benthic Foraminifera. PLoS ONE 11, e0158754 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Mar. Micropaleontol. 132, 18–34 (2017).

    Article 
    ADS 

    Google Scholar 

  • 55.

    Majewski, W. & Pawlowski, J. Morphologic and molecular diversity of the foraminiferal genus Globocassidulina in Admiralty Bay, West Antarctica. Antarct. Sci. 22, 271–281 (2010).

    Article 
    ADS 

    Google Scholar 

  • 56.

    Majewski, W., Bowser, S. S. & Pawlowski, J. Widespread intra-specific genetic homogeneity of coastal Antarctic benthic foraminifera. Polar Biol. 38, 1–12 (2015).

    Article 

    Google Scholar 

  • 57.

    Majda, A. et al. Variable dispersal histories across the Drake Passage: The case of coastal benthic Foraminifera. Mar. Micropaleontol. 140, 81–94 (2018).

    Article 
    ADS 

    Google Scholar 

  • 58.

    Gschwend, F., Majda, A., Majewski, W. & Pawlowski, J. Psammophaga fuegia sp. nov., a new monothalamid foraminifer from the Beagle Channel, South America. Acta Protozool. 55, 101–110 (2016).

    CAS 

    Google Scholar 

  • 59.

    Pawlowski, J. Introduction to the molecular systematics of foraminifera. Micropaleontology 46(Suppl 1), 1–12 (2000).

    Google Scholar 

  • 60.

    Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent (GMYC) Approach: A revised method and evaluation on simulated datasets. Syst. Biol. 62, 707–724 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Ezard, T., Fujisawa, T. & Barraclough, T. G. SPLITS: SPecies’ LImits by Threshold Statistics. R package version 1.0-18/r45, http://R-Forge.R-project.org/projects/splits/ (2009).

  • 67.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna). http://www.R-project.org/ (2020).

  • 68.

    Stamatakis, A. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 69.

    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

    CAS 

    Google Scholar 

  • 70.

    Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article 

    Google Scholar 

  • 71.

    Bandelt, H., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Fu, Y. X. New statistical tests of neutrality for DNA samples from a population. Genetics 143, 557–570 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 75.

    Heled, J. & Drummond, A. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Schweizer, M., Pawlowski, J., Kouwenhoven, T. J., Guiard, J. & van der Zwaan, G. J. Molecular phylogeny of Rotaliida (Foraminifera) based on complete small subunit rDNA sequences. Mar. Micropaleontol. 66, 233–246 (2008).

    Article 
    ADS 

    Google Scholar 

  • 77.

    Schweizer, M., Pawlowski, J., Kouwenhoven, T. & Van Der Zwaan, B. Molecular phylogeny of common Cibicidids and related rotaliida (Foraminifera) based on small subunit rDNA sequences. J. Foraminiferal Res. 39, 300–315 (2009).

    Article 

    Google Scholar 

  • 78.

    Schweizer, M. Evolution and molecular phylogeny of Cibicides and Uvigerina (Rotaliid, Foraminifera). Geol. Ultraiectina 261, 1–167 (2006).

    Google Scholar 

  • 79.

    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Loeblich, A. R. & Tappan, H. Foraminiferal Genera and their Classification (Van Nostrand Reinhold, 1987).

    Google Scholar 

  • 82.

    D’haenens, S., Bornemann, A., Stassen, P. & Speijer, R. Multiple early Eocene benthic foraminiferal assemblages and δ13C fluctuations at DSDP Site 401 (Bay of Biscay: NE Atlantic). Mar. Micropaleontol. 88–89, 15–35 (2012).

    Article 
    ADS 

    Google Scholar 

  • 83.

    Cushman, J. A. & Stone, B. Foraminifera from the Eocene, Chacra Formation, of Peru. Cont. Cushman Lab. Foram. Res. 25, 49–58 (1949).

    Google Scholar 

  • 84.

    Arreguin-Rodriguez, G. J., Thomas, E., Dhaenens, S., Speijer, R. P. & Alegret, L. Early eocene deep-sea benthic foraminiferal faunas: Recovery from the paleocene eocene thermal maximum extinction in a greenhouse world. PLoS ONE 13, e0193167 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 85.

    Proto Decima, F. & Ferasin, F. Nuove specie di foraminiferi nell’Eocene del Monte Ceva (Colli Euganei). Riv. Ital. Paleont. Strat. 60, 247–252 (1954).

    Google Scholar 

  • 86.

    Cushman, J. A. A rich foraminiferal fauna from the Cocoa Sand of Alabama. Cushman Lab. Foram. Res. Spec. Pub. 16, 1–40 (1946).

    Google Scholar 

  • 87.

    Heron-Allen, E. & Earland, A. Protozoa, Part 2. Foraminifera. Nat. Hist. Rep. Br. Antarct. Exp. 6, 25–268 (1922).

    Google Scholar 

  • 88.

    Shevenell, A. E., Kennett, J. P. & Lea, D. W. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective. Geochem. Geophys. Geosy. 9, Q02006 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 89.

    Lawver, L. A. & Gahagan, L. M. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 11–37 (2003).

    Article 

    Google Scholar 

  • 90.

    Lewis, A. R. et al. Mid-Miocene cooling and the extinction of tundra in continental Antarctica. Proc. Natl. Acad. Sci. USA 105, 10676–10680 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 91.

    Verducci, M. et al. The Middle Miocene climatic transition in the Southern Ocean: Evidence of paleoclimatic and hydrographic changes at Kerguelen plateau from planktonic foraminifers and stable isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 371–386 (2009).

    Article 

    Google Scholar 

  • 92.

    Majewski, W. & Bohaty, S. Surface−water cooling and salinity decrease during the Middle Miocene Climate Transition at Southern Ocean ODP Site 747 (Kerguelen Plateau). Mar. Micropaleontol. 74, 1–14 (2010).

    Article 
    ADS 

    Google Scholar 

  • 93.

    Cheng, C. H. C. & Detrich, H. W. Molecular ecophysiology of Antarctic notothenioid fishes. Philos. Trans. R. Soc. B 362, 2215–2232 (2007).

    CAS 
    Article 

    Google Scholar 

  • 94.

    Barco, A., Schiaparelli, S., Houart, R. & Oliverio, M. Cenozoic evolution of Muricidae (Mollusca, Neogastropoda) in the Southern Ocean, with the description of a new subfamily. Zool. Scr. 41, 596–616 (2012).

    Article 

    Google Scholar 

  • 95.

    González-Wevar, C. A., Nakano, T., Canete, J. I. & Poulin, E. Molecular phylogeny and historical biogeography of Nacella (Patellogastropoda: Nacellidae) in the Southern Ocean. Mol. Phylogen. Evol. 56, 115–124 (2010).

    Article 

    Google Scholar 

  • 96.

    González-Wevar, C. A. et al. Following the Antarctic Circumpolar Current: Patterns and processes in the biogeography of the limpet Nacella (Mollusca: Patellogastropoda) across the Southern Ocean. J. Biogeogr. 44, 861–874 (2017).

    Article 

    Google Scholar 

  • 97.

    González-Wevar, C. A. et al. Cryptic speciation in Southern Ocean Aequiyoldia eightsii (Jay, 1839): Mio-Pliocene trans-Drake separation and diversification. Prog. Oceanogr. 174, 44–54 (2019).

    Article 
    ADS 

    Google Scholar 

  • 98.

    Strugnell, J. M., Rogers, A. D., Prodohl, P. A., Collins, M. A. & Allcock, A. L. The thermohaline expressway: The Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24, 853–860 (2008).

    Article 

    Google Scholar 

  • 99.

    Feakins, S., Warny, S. & Lee, J. E. Hydrologic cycling over Antarctica during the middle Miocene warming. Nat. Geosci. 5, 557–560 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 100.

    Malumián, N. Foraminíferos bentónicos de la localidad tipo de la Formación La Despedida (Eoceno, Isla Grande de Tierra del Fuego) Part I: Textulariina y Miliolina. Ameghiniana 25, 341–356 (1989).

    Google Scholar 

  • 101.

    Scarpa, R. & Malumián, N. Foraminíferos del Oligoceno inferior de los Andes Fueguinos, Argentina: Su significado tectónico-ambiental. Ameghiniana 45, 361–376 (2008).

    Google Scholar 

  • 102.

    Galeotti, S., Cita, M. B. & Coccioni, R. Foraminiferal biostratigraphy and palaeoecology from two intervals of the CRP2/2A drilhole. Terra Antartica 7, 473–478 (2000).

    Google Scholar 

  • 103.

    Malumián, N. & El Olivero, E. B. Grupo Cabo Domingo, Tierra del Fuego: Bioestratigrafía, paleoambientes y acontecimientos del Eoceno-Mioceno marino. Rev. Asoc. Geol. Argent. 61, 139–160 (2006).

    Google Scholar 

  • 104.

    Li, B., Yoon, H. I. & Park, B. K. Foraminiferal assemblages and CaCO3 dissolution since the last deglaciation in the Maxwell Bay King George Island, Antarctica. Mar. Geol. 169, 239–257 (2000).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 105.

    Majewski, W. Benthic foraminiferal communities: Distribution and ecology in Admiralty Bay, King George Island, West Antarctica. Pol. Polar Res. 26, 159–214 (2005).

    Google Scholar 

  • 106.

    Corliss, B. Size variation in the deep-sea benthonic foraminifer Globocassidulina subglobosa (Brady) in the Southeast Indian Ocean. J. Foraminiferal Res. 9, 50–60 (1979).

    Article 

    Google Scholar 

  • 107.

    Wright, J. D. & Miller, K. G. Southern ocean influences on late eocene to miocene deepwater circulation. Antarct. Res. Ser. 60, 1–25 (1993).

    Article 

    Google Scholar 

  • 108.

    Colleoni, F. et al. Past continental shelf evolution increased Antarctic ice sheet sensitivity to climatic conditions. Sci. Rep. 8, 11323 (2018).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 109.

    Strugnell, J. M. et al. The Southern ocean: Source and sink?. Deep-Sea Res. II 58, 196–204 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 110.

    Verheye, M. L., Backeljau, T. & d’Udekem d’Acoz, C. Locked in the icehouse: Evolution of an endemic Epimeria (Amphipoda, Crustacea) species flock on the Antarctic shelf. Mol. Phylogenet. Evol. 114, 14–33 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 111.

    Galeotti, S. & Coccioni, R. Foraminiferal analysis of the Miocenc CRP-l core (Ross Sea, Antarctica). Terra Antartica 5, 521–526 (1998).

    Google Scholar 

  • 112.

    Pillet, L., Fontaine, D. & Pawlowski, J. Intra-genomic ribosomal RNA polymorphism and morphological variation in Elphidium macellum suggests inter-specific hybridization in Foraminifera. PLoS ONE 7, e32373 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 113.

    Darling, J. Interspecific hybridization and mitochondrial introgression in invasive Carcinus shore crabs. PLoS ONE 6, e17828 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 114.

    Dietz, L. et al. Regional differentiation and extensive hybridization between mitochondrial clades of the Southern Ocean giant sea spider Colossendeis megalonyx. R. Soc. Open Sci. 2, 140424 (2015).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 115.

    Ruiz, M. B., Taverna, A., Servetto, N., Sahade, R. & Held, C. Hidden diversity in Antarctica: Molecular and morphological evidence of two different species within one of the most conspicuous ascidian species. Ecol. Evol. 10, 8127–8143 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 116.

    Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).

    Article 
    ADS 

    Google Scholar 

  • 117.

    Avila, C. et al. Invasive marine species discovered on non–native kelp rafts in the warmest Antarctic island. Sci. Rep. 10, 1639 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 118.

    Alve, E. & Goldstein, S. T. Propagule transport as a key method of dispersal in benthic Foraminifera (Protista). Limnol. Oceanogr. 48, 2163–2170 (2003).

    Article 
    ADS 

    Google Scholar 

  • 119.

    Alve, E. & Goldstein, S. T. Dispersal, survival and delayed growth of benthic foraminiferal propagules. J. Sea Res. 63, 36–51 (2010).

    Article 
    ADS 

    Google Scholar 

  • 120.

    Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl. Acad. Sci. USA. 115, 13288–13293 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 121.

    Carter, A., Curtis, M. & Schwanenthal, J. Cenozoic tectonic history of the South Georgia microcontinent and potential as a barrier to Pacific-Atlantic through flow. Geology 42, 299–302 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 122.

    Clarke, A., Barnes, D. K. A. & Hodgson, D. A. How isolated is Antarctica?. Trends Ecol. Evol. 20, 1–3 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 123.

    Glorioso, P. D., Piola, A. R. & Leben, R. R. Mesoscale eddies in the Subantarctic Front: Southwest Atlantic. Sci. Mar. 69(Suppl 2), 7–15 (2012).

    Google Scholar 

  • 124.

    Bart, P. J. & Iwai, M. The overdeepening hyphothesis: how erosional modification of the marine-scape during the early Pliocene altered glacial dynamics on the Antarctic Peninsula’s Pacific margin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335–336, 42–51 (2012).

    Article 

    Google Scholar 

  • 125.

    González-Wevar, C. A., Díaz, A., Gerard, K., Caňete, J. I. & Poulin, E. Divergence time estimations and contrasting patterns of genetic diversity between Antarctic and southern South America benthic invertebrates. Rev. Chil. Hist. Nat. 85, 445–456 (2012).

    Article 

    Google Scholar 

  • 126.

    Poulin, E., González-Wevar, C., Díaz, A., Gérard, K. & Hüne, M. Divergence between Antarctic and South American marine invertebrates: what molecular biology tells us about the Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Glob. Planet. Change. 123, 392–399 (2014).

    Article 
    ADS 

    Google Scholar 

  • 127.

    McKay, R. et al. Pleistocene variability of Antarctic ice sheet extent in the Ross embayment. Quat. Sci. Rev. 34, 93–112 (2012).

    Article 
    ADS 

    Google Scholar 

  • 128.

    Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 129.

    Allcock, A. L. & Strugnell, J. M. Southern Ocean diversity: New paradigms from molecular ecology. Trends Ecol. Evol. 278, 520–528 (2012).

    Article 

    Google Scholar 

  • 130.

    Wilson, N. G., Schrödl, M. & Halanych, K. M. Ocean barriers and glaciation: Evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol. Ecol. 18, 965–984 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 131.

    Arango, C. P., Soler-Membrives, A. & Miller, K. J. Genetic differentiation in the circum-Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae). Deep Sea Res. II 58, 212–219 (2011).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 132.

    Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: Biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 133.

    Darling, K. F., Kucera, M., Pudsey, C. J. & Wade, C. M. Molecular evidence links cryptic diversification in polar planktonic protists to quaternary climate dynamics. Proc. Natl. Acad. Sci. USA. 101, 7657–7662 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 134.

    Quilty, P. G. Neogene foraminifers and accessories, ODP Leg 188, Sites 1165, 1166, and 1167, Prydz Bay, Antarctica. Proc. Ocean Drill. Prog. Sci. Results 188, 1–41 (2003).

    Google Scholar 

  • 135.

    Díaz, A. et al. Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: The role of the last glaciation. PLoS ONE 13, e0197611 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 136.

    Brey, T., Dahm, C., Gorny, M., Stiller, M. & Arntz, W. E. Do Antarctic benthic invertebrates show extended levels of eurybathy?. Ant. Sci. 8, 3–6 (1996).

    Article 

    Google Scholar 

  • 137.

    Dambach, J., Thatje, S., Rödder, D., Basher, Z. & Raupach, M. J. Effects of Late-Cenozoic glaciation on habitat availability in Antarctic benthic shrimps (Crustacea: Decapoda: Caridea). PLoS ONE 7, e4628 (2012).

    Article 
    CAS 

    Google Scholar 

  • 138.

    Soler-Membrives, A., Linse, K., Miller, K. J. & Arango, C. P. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider. R. Soc. Open Sci. 4, 170615 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 139.

    Holbourn, A., Henderson, A. & McLeod, N. Atlas of Benthic Foraminifera (Wiley-Blackwell, 2013).

    Book 

    Google Scholar 

  • 140.

    Gooday, A. J. & Jorissen, F. J. Benthic foraminiferal biogeography: Controls on global distribution patterns in deep-water settings. Ann. Rev. Mar. Sci. 4, 237–262 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 141.

    Melis, R. & Salvi, G. Late Quaternary foraminiferal assemblages from western Ross Sea (Antarctica) in relation to the main glacial and marine lithofacies. Mar. Micropaleontol. 70, 39–53 (2009).

    Article 
    ADS 

    Google Scholar 

  • 142.

    Majewski, W., Wellner, J. S. & Anderson, J. B. Environmental connotations of benthic foraminiferal assemblages from coastal West Antarctica. Mar. Micropaleontol. 124, 1–15 (2016).

    Article 
    ADS 

    Google Scholar 

  • 143.

    Majewski, W., Stolarski, J. & Bart, P. J. Two rare pustulose/sponose morphotypes of benthic foraminifera from eastern Ross Sea. J. Foraminiferal Res. 49, 405–422 (2019).

    Article 

    Google Scholar 

  • 144.

    Davies, B. J. et al. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth Sci. Rev. 204, 103152 (2020).

    Article 

    Google Scholar 

  • 145.

    González-Wevar, C. A. et al. Phylogeography in Galaxias maculatus (Jenyns, 1848) along two biogeographical provinces in the Chilean coast. PLoS ONE 10, e0131289 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 146.

    Ocaranza-Barrera, P., González Wevar, C. A., Guillemin, M.-L., Rosenfeld, S. & Mansilla, A. Molecular divergence between Iridaea cordata (Turner) Bory de Saint-Vincent from the Antarctic Peninsula and the Magellan Region. J. Appl. Phycol. 31, 939–949 (2019).

    CAS 
    Article 

    Google Scholar 

  • 147.

    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: Microfossils as a model. Biol. Rev. 92, 199–215 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 148.

    Yasuhara, M. et al. Time machine biology: Cross-timescale integration of ecology, evolution, and oceanography. Oceanography 33, 16–28 (2020).

    Article 

    Google Scholar 

  • 149.

    Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, L19604 (2005).

    ADS 

    Google Scholar 

  • 150.

    Convey, P. & Peck, L. S. Antarctic environmental change and biological responses. Sci. Adv. 11, 0888 (2019).

    ADS 

    Google Scholar 

  • 151.

    Ingels, J. et al. Possible effects of global environmental changes on Antarctic benthis: A synthesis across five major taxa. Ecol. Evol. 2, 453–485 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A robot that finds lost items

    Isotope data from amino acids indicate Darwin’s ground sloth was not an herbivore