in

Climate driven spatiotemporal variations in seabird bycatch hotspots and implications for seabird bycatch mitigation

[adace-ad id="91168"]
  • 1.

    BirdLife International. State of the World’s Birds: Taking the Pulse of the Planet (BirdLife International, 2018).

    Google Scholar 

  • 2.

    Dias, M. P. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).

    Article 

    Google Scholar 

  • 3.

    Gales, R. in Albatross Biology and Conservation (eds Robertson, G. & Gales, R.) 20–45 (Surrey Beatty and Sons, Chipping Norton, 1998).

  • 4.

    Gales, R., Brothers, N. & Reid, T. Seabird mortality in the Japanese tuna longline fishery around Australia, 1988–1995. Biol. Conserv. 86, 37–56 (1998).

    Article 

    Google Scholar 

  • 5.

    Anderson, O. R. et al. Global seabird bycatch in longline fisheries. Endanger. Species Res. 14, 91–106 (2011).

    Article 

    Google Scholar 

  • 6.

    Warham, J. The Petrels: Their Ecology and Breeding Systems (Academic Press, 1990).

    Google Scholar 

  • 7.

    Warham, J. The Behaviour, Population Biology and Physiology of the Petrels (Academic Press, 1996).

    Google Scholar 

  • 8.

    Dietrich, K. S., Parrish, J. K. & Melvin, E. F. Understanding and addressing seabird bycatch in Alaska demersal longline fisheries. Biol. Conserv. 142, 2642–2656 (2009).

    Article 

    Google Scholar 

  • 9.

    Zhou, C., Jiao, Y. & Browder, J. A. Seabird bycatch vulnerability to pelagic longline fisheries: Ecological traits matter. Aquat. Conserv.: Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3066 (2019).

    Article 

    Google Scholar 

  • 10.

    Brothers, N. The incidental catch of seabirds by longline fisheries: Worldwide review and technical guidelines for mitigation. FAO Fish. Circ. 937, 1–100 (1999).

    ADS 

    Google Scholar 

  • 11.

    Gilman, E. Integrated management to address the incidental mortality of seabirds in longline fisheries. Aquat. Conserv.: Mar. Freshw. Ecosyst. 11, 391–414 (2001).

    Article 

    Google Scholar 

  • 12.

    Li, Y. & Jiao, Y. Modeling spatial patterns of rare species using eigenfunction-based spatial filters: An example of modified delta model for zero-inflated data. Ecol. Model. 299, 51–63 (2015).

    Article 

    Google Scholar 

  • 13.

    Li, Y., Jiao, Y. & Browder, J. A. Assessment of seabird bycatch in the US Atlantic pelagic longline fishery, with an extra exploration on modeling spatial variation. ICES J. Mar. Sci. 73, 2687–2694 (2016).

    Article 

    Google Scholar 

  • 14.

    Brothers, N. Albatross mortality and associated bait loss in the Japanese longline fishery in the Southern Ocean. Biol. Conserv. 55, 255–268 (1991).

    Article 

    Google Scholar 

  • 15.

    Croxall, J. P. & Nicol, S. Management of Southern Ocean fisheries: Global forces and future sustainability. Antarct. Sci. 16, 569–584 (2004).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Løkkeborg, S. Best practices to mitigate seabird bycatch in longline, trawl and gillnet fisheries – efficiency and practical applicability. Mar. Ecol. Prog. Ser. 435, 285–303 (2011).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Beerkircher, L. R., Brown, C. J., Abercrombie, D. L. & Lee, D. W. Overview of the SEFSC pelagic observer program in the Northwest Atlantic from 1992–2002. ICCAT CVSP 58, 1729–1748 (2005).

    Google Scholar 

  • 18.

    Diaz, G. A., Beerkircher, L. R. & Restrepo, V. R. Description of the US pelagic observer program (POP). ICCAT CVSP 64, 2415–2426 (2009).

    Google Scholar 

  • 19.

    Lee, D. W. & Brown, C. J. SEFSC pelagic observer program data summary for 1992–1996. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center (1998).

  • 20.

    Lo, N. C., Jacobson, L. D. & Squire, J. L. Indices of relative abundance from fish spotter data based on delta-lognornial models. Can. J. Fish. Aquat. Sci. 49, 2515–2526 (1992).

    Article 

    Google Scholar 

  • 21.

    Martin, T. G. et al. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8, 1235–1246 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Winter, A., Jiao, Y. & Browder, J. A. Modeling low rates of seabird bycatch in the US Atlantic longline fishery. Waterbirds 34, 289–303 (2011).

    Article 

    Google Scholar 

  • 23.

    Cortés, V., Arcos, J. M. & González-Solís, J. Seabirds and demersal longliners in the northwestern Mediterranean: Factors driving their interactions and bycatch rates. Mar. Ecol. Prog. Ser. 565, 1–16 (2017).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Bi, R., Jiao, Y., Zhou, C. & Hallerman, E. M. A Bayesian spatiotemporal approach to inform management unit appropriateness. Can. J. Fish. Aquat. Sci. 76, 217–237 (2018).

    Article 

    Google Scholar 

  • 25.

    Wikle, C. K. Hierarchical models in environmental science. Int. Stat. Rev. 71, 181–199 (2003).

    MATH 
    Article 

    Google Scholar 

  • 26.

    Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V. & Wikle, C. K. Accounting for uncertainty in ecological analysis: The strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 19, 553–570 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data (CRC Press, 2014).

    MATH 
    Book 

    Google Scholar 

  • 28.

    Besag, J., York, J. & Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–20 (1991).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 29.

    Rue, H. & Held, L. Gaussian Markov Random Fields: Theory and Applications (CRC Press, 2005).

    MATH 
    Book 

    Google Scholar 

  • 30.

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 31.

    Held, L., Schrödle, B. & Rue, H. in Statistical Modelling and Regression Structures (eds Kneib, T. & Tutz, G.) 91–110 (Springer, Berlin Heidelberg, 2010).

  • 32.

    Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 423–498 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 33.

    Bakka, H., Vanhatalo, J., Illian, J. B., Simpson, D. & Rue, H. Non-stationary Gaussian models with physical barriers. Spat. Stat. 29, 268–288 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • 34.

    NCAR (National Center for Atmospheric Research). The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (PC-based). Available from: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based. Retrieved: March 1, 2019.

  • 35.

    ESRL (Earth Science Research Laboratory, NOAA). Climate timeseries: AMO (Atlantic Multidecadal Oscillation) Index. Available from: http://www.esrl.noaa.gov/psd/data/timeseries/AMO/. Retrieved: March 1, 2019.

  • 36.

    Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 37.

    Watanabe, S. Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571–3594 (2010).

    MathSciNet 
    MATH 

    Google Scholar 

  • 38.

    Shumway, R. H. & Stoffer, D. S. Time Series Analysis and Its Applications (Springer, 2011).

    MATH 
    Book 

    Google Scholar 

  • 39.

    Bi, R., Jiao, Y., Bakka, H. & Browder, J. A. Long-term climate ocean oscillations inform seabird bycatch from pelagic longline fishery. ICES J. Mar. Sci. 77, 668–679 (2020).

    Article 

    Google Scholar 

  • 40.

    Lear, W. H. History of fisheries in the Northwest Atlantic: The 500 year perspective. J. Northwest Atl. Fish. Sci. 23, 41–73 (1998).

    Article 

    Google Scholar 

  • 41.

    Veit, R. R., Goyert, H. F., White, T. P., Martin, M. C., Manne, L. L. & Gilbert, A. Pelagic Seabirds off the East Coast of the United States 2008–2013. US Dept. of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs, Sterling, VA. OCS Study BOEM, 24, 186 (2015).

  • 42.

    Harrison, P. Seabirds, an identification guide (Houghton Mifflin, 1983).

    Google Scholar 

  • 43.

    Onley, D. & Scofield, P. Albatrosses, petrels and shearwaters of the world (Princeton University Press, 2013).

    Google Scholar 

  • 44.

    Gladics, A. J. et al. Fishery-specific solutions to seabird bycatch in the U.S. West Coast sablefish fishery. Fish. Res. 196, 85–95 (2017).

    Article 

    Google Scholar 

  • 45.

    Grieve, B. D., Hare, J. A. & Saba, V. S. Projecting the effects of climate change on Calanus finmarchicus distribution within the U.S. Northeast Continental Shelf. Sci. Rep. 7, 6264 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 46.

    Petersen, S. L., Honig, M. B., Ryan, P. G. & Underhill, L. G. Seabird bycatch in the pelagic longline fishery off southern Africa. Afr. J. Mar. Sci. 31, 191–204 (2009).

    Article 

    Google Scholar 

  • 47.

    Arcos, J. M. & Oro, D. Significance of fisheries discards for a threatened Mediterranean seabird, the Balearic shearwater Puffinus mauretanicus. Mar. Ecol. Prog. Ser. 239, 209–220 (2002).

    ADS 
    Article 

    Google Scholar 

  • 48.

    Furness, R., Edwards, A. & Oro, D. Influence of management practices and of scavenging seabirds on availability of fisheries discards to benthic scavengers. Mar. Ecol. Prog. Ser. 350, 235–244 (2007).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Grémillet, D. et al. A junk-food hypothesis for gannets feeding on fishery waste. Proc. Biol. Sci. 275, 1149–1156 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Skov, H. & Durinck, J. Seabird attraction to fishing vessels is a local process. Mar. Ecol. Prog. Ser. 214, 289–298 (2001).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Chapman, D. C., Barth, J. A., Beardsley, R. C. & Fairbanks, R. G. On the continuity of mean flow between the Scotian Shelf and the Middle Atlantic Bight. J. Phys. Oceanogr. 16, 758–772 (1986).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Steimle, F. W. & Zetlin, C. Reef habitats in the middle Atlantic bight: Abundance, distribution, associated biological communities, and fishery resource use. Mar. Fish. Rev. 62, 24–42 (2000).

    Google Scholar 

  • 53.

    Lee, D. S. Pelagic seabirds and the proposed exploration for fossil fuels off North Carolina: A test for conservation efforts of a vulnerable international resource. J. Elisha Mitchell Sci. Soc. 115, 294–315 (1999).

    Google Scholar 

  • 54.

    Kai, E. T. et al. Top marine predators track Lagrangian coherent structures. Proc. Natl. Acad. Sci. 106, 8245–8250 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 55.

    Li, Y., Browder, J. A. & Jiao, Y. Hook effects on seabird bycatch in the United States Atlantic pelagic longline fishery. Bull. Mar. Sci. 88, 559–569 (2012).

    Article 

    Google Scholar 

  • 56.

    Taylor, A. H. & Stephens, J. A. The North Atlantic Oscillation and the latitude of the Gulf Stream. Tellus 50, 134–142 (1998).

    Article 

    Google Scholar 

  • 57.

    Hobday, A. J., Hartog, J. R., Spillman, C. M. & Alves, O. Seasonal forecasting of tuna habitat for dynamic spatial management. Can. J. Fish. Aquat. Sci. 68, 898–911 (2011).

    Article 

    Google Scholar 

  • 58.

    FAO (Food and Agriculture Organization of the United Nations). Guidelines to reduce sea turtle mortality in fishing operations. FAO Technical Guidelines for Responsible Fisheries Prepared by Gilman, E., Bianchi, G. FAO: Rome. ISBN 978-92-106226-5 (2009).

  • 59.

    Bethoney, N. D., Schondelmeier, B. P., Kneebone, J. & Hoffman, W. S. Bridges to best management: Effects of a voluntary bycatch avoidance program in a mid-water trawl fishery. Mar. Policy 83, 172–178 (2017).

    Article 

    Google Scholar 

  • 60.

    Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 19 (2015).

    Article 

    Google Scholar 

  • 61.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

  • 62.

    Rue, H., Martino, S. & Lindgren, F. INLA: Functions which allow to perform a full Bayesian analysis of structured (geo-)additive models using integrated nested Laplace approximation. R package version 0.0., GNU General Public License, version 3 (2009).

  • 63.

    Simpson, D., Rue, H., Riebler, A., Martins, T. G. & Sørbye, S. H. Penalising model component complexity: A principled, practical approach to constructing priors (with discussion). Stat. Sci. 32, 1–28 (2017).

    MATH 

    Google Scholar 

  • 64.

    Fuglstad, G.-A., Simpson, D., Lindgren, F. & Rue, H. Constructing priors that penalize the complexity of Gaussian random fields. J. Am. Stat. Assoc. 114, 445–452 (2018).

    MathSciNet 
    MATH 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Plummer, M. Penalized loss functions for Bayesian model comparison. Biostat. 9, 523–539 (2008).

    MATH 
    Article 

    Google Scholar 

  • 66.

    Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How marsh grass protects shorelines

    Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes