in

Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching

[adace-ad id="91168"]
  • 1.

    Sullivan, D. Composting biosolids into high quality agricultural product. BioCycle 51, 39–40 (2010).

    Google Scholar 

  • 2.

    Wang, X., Chen, T., Ge, Y. & Jia, Y. Studies on land application of sewage sludge and its limiting factors. J. Hazard. Mater. 160, 554–558 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Borjesson, G. & Katterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 112, 369–385 (2018).

    Article  Google Scholar 

  • 4.

    Kelly, J. J., Favila, E., Hundal, L. S. & Marlin, J. C. Assessment of soil microbial communities in surface applied mixtures of Illinois River sediments and biosolids. Appl. Soil Ecol. 36, 176–183 (2007).

    Article  Google Scholar 

  • 5.

    Kelly, J. J., Polocht, K., Grancharova, T. & Hundal, L. S. Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl. Environ. Microbiol. 77, 6551–6558 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Nakatani, A. S. et al. Changes in the genetic structure of bacteria and microbial activity in an agricultural soil amended with tannery sludge. Soil Biol. Biochem. 43, 106–114 (2011).

    CAS  Article  Google Scholar 

  • 7.

    Wang, M. & Xue., J., Horswell, J., Kimberley, M.O. & Huang, Z. ,. Long-term biosolids application alters the composition of soil microbiakl groups and nutrient status in a pine plantation. Biol. Fert. Soils 53, 799–809 (2017).

    CAS  Article  Google Scholar 

  • 8.

    Zaleski, K. J., Josephson, K. L., Gerba, C. P. & Pepper, I. L. Potential regrowth and recolonization of Salmonellae and indicators in biosolids and biosolid-amended soil. Appl. Environ. Microbiol. 71, 3701–3708 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Singh, R. P. & Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manage. 28, 347–358 (2008).

    CAS  Article  Google Scholar 

  • 10.

    Sigua, C. Recycling biosolids and lack-dredged materials to pasture-based animal agriculture: alternative nutrient sources for forage productivity and sustainability. A review. Agron. Sustain. Dev. 29, 143–160 (2009).

    CAS  Article  Google Scholar 

  • 11.

    McBride, M. B. Toxic metal accumulation from agricultural use of sludge—are USEPA regulations protective?. J. Environ. Qual. 24, 5–18 (1995).

    CAS  Article  Google Scholar 

  • 12.

    Navarro, I. et al. Environmental risk assessment of perfluoroalkyl substances and halogenated flame retardants released from biosolids-amended soils. Chemosphere 210, 147–155 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Mantovi, P., Baldoni, G. & Toderi, G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: effects of long-term application on soil and crop. Water Res. 39, 289–296 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Paramashivam, D. et al. Effect of pine waste and pine biochar on nitrogen mobility in biosolids. J. Environ. Qual. 45, 360–367 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Willen, A., Junestedt, C., Rodhe, L., Pell, M. & Jonsson, H. Sewage sludge as fertiliser—environmental assessment of storage and land application options. Water Sci. Technol. 75, 1034–1050 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Weaver, D. M. & Reed, A. E. G. Patterns of nutrient status and fertiliser practice on soils of the south coast of Western Australia. Agric. Ecosyst. Environ. 67, 37–53 (1998).

    Article  Google Scholar 

  • 17.

    Knowles, O. A., Robinson, B. H., Contangelo, A. & Clucas, L. Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Sci. Total Environ. 409, 3206–3210 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. & Murphy, D. V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311–324 (2012).

    CAS  Article  Google Scholar 

  • 19.

    Dempster, D. N., Jones, D. L. & Murphy, D. V. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221 (2012).

    CAS  Article  Google Scholar 

  • 20.

    Shanmugam, S., Abbott, L. K. & Murphy, D. V. Clay addition to lime-amended biosolids overcomes water repellence and provides nitrogen supply in an acid sandy soil. Soil Biol. Fert. Soils 50, 1047–1059 (2014).

    CAS  Article  Google Scholar 

  • 21.

    Paramashivam, D., Dickinson, N. M., Clough, T. J., Horswell, J. & Robinson, B. H. Potential environmental benefits from blending biosolids with other organic amendments before application to land. J. Environ. Qual. 46, 481–489 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Samara, E., Matsi, T., Zdragas, A. & Barbayiannis, N. Use of clay minerals for sewage sludge stabilization and a preliminary assessment of the treated sludge’s fertilization capacity. Environ. Sci. Polut. R. 26, 35387–35398 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Djajadi, Abbott, L. K. & Hinz, C. Synergistic impacts of clay and organic matter on structural and biological properties of a sandy soil. Geoderma 183, 19–24 (2012).

    ADS  Article  Google Scholar 

  • 24.

    Ma, B., Lv, X., Cai, Y., Chang, S. X. & Dyke, M. F. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biol. Biochem. 123, 45–53 (2018).

    CAS  Article  Google Scholar 

  • 25.

    Dilly, O., Blume, H.-P. & Munch, J. C. Soil microbial activities in Luvisols and Anthrosols during 9 years of region-typical tillage and fertilisation practices in northern Germany. Biogeochemistry 65, 319–339 (2003).

    CAS  Article  Google Scholar 

  • 26.

    Lehmann, J. et al. Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011).

    CAS  Article  Google Scholar 

  • 27.

    Liang, B. et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R. & Condron, L. M. A wood based low-temperature biochar captures NH3-N generated from ruminant urine-N, retaining its bioavailability. Plant Soil 353, 73–84 (2012).

    CAS  Article  Google Scholar 

  • 29.

    Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Singh, B. P., Hatton, B. J., Singh, B., Cowie, A. L. & Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 39, 1224–1235 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 31.

    Wang, D., Felice, M. L. & Scow, K. M. Impacts and interactions of biochar and biosolids on agricultural soil microbial communities during dry and wet-dry cycles. Appl. Soil Ecol. 152, 103570 (2020).

    Article  Google Scholar 

  • 32.

    Wu, H. et al. Responses of bacterial community and functional marker genes of nitrogen cycling to biochar, compost and combined amendments in soil. Appl. Microbiol. Biotechnol. 100, 8583–8591 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Xu, H.-J. et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ. Sci. Technol. 48, 9391–9399 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 34.

    Solaiman, Z. M., Abbott, L. K. & Murphy, D. V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phorphorus cycling. Sci. Rep.-U.K. 9, 5062 (2019).

    ADS  Article  CAS  Google Scholar 

  • 35.

    Cao, H. et al. Biochar can increase nitrogen use efficiency of Malus hupehensis by modulating nitrate reduction of soil and root. Appl. Soil Ecol. 135, 25–32 (2019).

    Article  Google Scholar 

  • 36.

    Zhang, K. et al. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fert. Soils 53, 77–87 (2017).

    CAS  Article  Google Scholar 

  • 37.

    Gartler, J., Robinson, B., Burton, K. & Clucas, L. Carbonaceous soil amendments to biofortify crop plants with zinc. Sci. Total Environ. 465, 308–313 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Hassink, J. Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralisation. Soil Biol. Biochem. 26, 1221–1231 (1994).

    Article  Google Scholar 

  • 39.

    Wang, H., Kimberley, M. O. & Schlegelmilch, M. Biosolids-derived nitrogen mineralisation and transformation in forest soils. J. Environ. Qual. 32, 1851–1856 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Atkinson, C. J., Fitzgerald, J. & Hipps, N. Potential mechanisms for achieving agricultural benefits fromm biochar application to temperate soils: a review. Plant Soil 337, 1–18 (2010).

    CAS  Article  Google Scholar 

  • 41.

    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Microscopy observations of habitable space in biochar for colonization by fungal hyphae from soil. J. Integr. Agric. 13, 483–490 (2014).

    Article  Google Scholar 

  • 42.

    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Soil microbial responses to biochar varying in particle size, surface and pore properties. Pedosphere 25, 770–780 (2015).

    Article  Google Scholar 

  • 43.

    Jaafar, N. M., Clode, P. L. & Abbott, L. K. Biochar-soil interactions in four agricultural soils. Pedosphere 25, 729–736 (2015).

    CAS  Article  Google Scholar 

  • 44.

    Petersen, S. O. et al. Recycling of sewage sludge and household compost to arable land: fate and effects of organic contaminants, and impact on soil fertility. Soil Till Res. 72, 139–152 (2003).

    Article  Google Scholar 

  • 45.

    Warman, P. R. & Termeer, W. C. Evaluation of sewage sludge, septic waste and sludge compost applications to corn and forage: yields and N, P and K content of crops and soils. Bioresour. Technol. 96, 955–961 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Campos, T., Chear, G., Leles, P. D., Silva, M. & Santos, F. Leaching of heavy metals in soils conditioned with biosolids from sewage sludge. Floresta e Amniente 26, e20180399 (2019).

    Article  Google Scholar 

  • 47.

    Peoples, M. et al. Factors affecting the potential contributions of N2 Fuxation by legumes in Australian pasture systems. Crop Pasture Sci. 63, 759–786 (2012).

    CAS  Article  Google Scholar 

  • 48.

    Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H. & Murphy, D. V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 45, 113–124 (2012).

    CAS  Article  Google Scholar 

  • 49.

    Mickan, B. S., Abbott, L. K., Stefanova, K. & Solaiman, Z. M. Interactions between biochar and mycorrhizal fungi in water-stressed agricultural soil. Mycorrhiza 26, 565–574 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Hale, S. E. et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 91, 1612–1619 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Zheng, J., Stewart, C. E. & Cotrufo, M. F. Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J. Environ. Qual. 41, 1361–1370 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Dempster, D. N., Jones, D. L. & Murphy, D. V. Organic nitrogen mineralisation in two contrasting agro-ecosystems is unchanged by biochar addition. Soil Biol. Biochem. 48, 47–50 (2012).

    CAS  Article  Google Scholar 

  • 53.

    Verhoeven, E. & Six, J. Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agric. Ecosyst. Environ. 191, 27–38 (2014).

    CAS  Article  Google Scholar 

  • 54.

    Hamza, M. A. & Anderson, W. K. Responses of soil properties and grain yields to deep ripping and gypsum application in a compacted loamy sand soil contrasted with a sandy clay loam soil in Western Australia. Aust. J. Agric. Res. 54, 273–282 (2003).

    Article  Google Scholar 

  • 55.

    Asadishad, B. et al. Amendment of agricultural soil with metal nanoparticles: effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 52, 1908–1918 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Mossa, A.-W., Dickinson, M. J., West, H. M., Young, S. D. & Crout, N. M. J. The response of soil microbial diversity and abundance to long-term application of biosolids. Environ. Pollut. 224, 16–25 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Sullivan, T. S., Stromberger, M. E. & Paschke, M. W. Parallel shifts in plant and soil microbial communities in response to biosolids in a semi-arid grassland. Soil Biol. Biochem. 38, 449–459 (2006).

    CAS  Article  Google Scholar 

  • 58.

    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Jenkins, S. N. et al. Actinobacterial community dynamics in long term managed grasslands. Anton Van Leeuwenhoek 95, 319–334 (2009).

    Article  Google Scholar 

  • 60.

    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Zhang, X., Liu, W., Zhang, G., Jiang, L. & Han, X. Mechanisms of soil acidification reducing bacterial diversity. Soil Biol. Biochem. 81, 275–281 (2015).

    CAS  Article  Google Scholar 

  • 62.

    Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    O’Brien, F. J. M. et al. Soil salinity and pH drive soil bacterial community composition and diversity along a lateritic slope in the Avon River critical zone observatory, Western Australia. Front. Microbiol. 10, 1486. https://doi.org/10.3389/fmicb.2019.01486 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Zeng, Q. C., Dong, Y. H. & An, S. S. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau. China. Plos One. 11, e015289 (2016).

    Google Scholar 

  • 66.

    Gigliucci, F., Brambilla, G., Tozzoli, R., Michelacci, V. & Morabito, S. Comparative analysis of metagenomes of Italian top soil improvers. Environ. Res. 155, 108–115 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M. & Radosevich, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl. Environ. Microbiol. 77, 6295–6300 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Mendez, M. O., Neilson, J. W. & Maier, R. M. Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl. Environ. Microbiol. 74, 3899–3907 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Kim, J.-S., Dungan, R. S. & Crowley, D. Microarray analysis of bacterial diversity and distribution in aggregates from a desert agricultural soil. Biol. Fert. Soils 44, 1003–1011 (2008).

    CAS  Article  Google Scholar 

  • 70.

    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Jenkins, S. N. et al. Taxon-specific responses of soil bacteria to the addition of low level C inputs. Soil Biol. Biochem. 42, 1624–1631 (2010).

    CAS  Article  Google Scholar 

  • 72.

    Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 9, 1177–1194 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol. 7, 744–744 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Barton, L., Gleeson, D. B., Maccarone, L. D., Zuniga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?. Soil Biol. Biochem. 62, 28–35 (2013).

    CAS  Article  Google Scholar 

  • 76.

    Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).

    CAS  Article  Google Scholar 

  • 77.

    Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).

    CAS  Article  Google Scholar 

  • 78.

    Fisk, L. M., Maccarone, L. D., Barton, L. & Murphy, D. V. Nitrapyrin decreased nitrification of nitrogen released from soil organic matter but not amoA gene abundance at high soil temperature. Soil Biol. Biochem. 88, 214–223 (2015).

    CAS  Article  Google Scholar 

  • 79.

    Wu, J. & Brookes, P. C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem. 37, 507–515 (2005).

    CAS  Article  Google Scholar 

  • 80.

    Rayment, G. & Higginson, F. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata Press, Melbourne, 1992).

    Google Scholar 

  • 81.

    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19, 703–707 (1987).

    CAS  Article  Google Scholar 

  • 82.

    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol. 31, 814–821 (2013).

    CAS  Article  Google Scholar 

  • 83.

    Mori, H. et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 21, 217–227 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 84.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME 6, 1621–1624 (2012).

    CAS  Article  Google Scholar 

  • 85.

    Mickan, B. S., Abbott, L. K., Fan, J., Hart, M. M., Siddique, K. H. M., Solaiman, Z. M. & Jenkins, S. N. Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fert Soils. 54, 55–70 (2018).

    Article  Google Scholar 

  • 86.

    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75, 7537–7541 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 87.

    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27, 2194–2200 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 89.

    Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-4. http://CRAN.R-project.org/package=vegan. (2010).


  • Source: Ecology - nature.com

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92