Crick FHC, Barnett FRSL, Brenner S, Watts-Tobin RJ. General Nature of the Genetic Code for Proteins. Nature. 1961;192:1227–32.
Google Scholar
Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952;36:39–56.
Google Scholar
Luria S, Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943;28:491–511.
Google Scholar
Kortright KE, Chan BK, Koff JL, Turner PE. Phage Therapy: a Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019;25:219–32.
Google Scholar
Mushegian AR. Are there 10^31 virus particles on Earth, or more, or less? J Bacteriol. 2020;202:e00052–20.
Google Scholar
Dennehy JJ. What Can Phages Tell Us about Host-Pathogen Coevolution? Int J Evol Biol. 2012;2012:1–12.
Google Scholar
Jessup CM, Kassen R, Forde SE, Kerr B, Buckling A, Rainey PB, et al. Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol. 2004;19:189–97.
Google Scholar
Tecon R, Mitri S, Ciccarese D, Or D, Meer JR, van der, Johnson DR. Bridging the Holistic-Reductionist Divide in Microbial Ecology. MSystems. 2019;4:e00265–18.
Google Scholar
Bohannan BJM, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett. 2000;3:362–77.
Google Scholar
Buckling A, Brockhurst MA. Bacteria-Virus Coevolution. In: Orkun S Soyer, editor. Evolutionary Systems Biology. 2012. New York, NY: Springer; 2012. p. 347–70.
Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:1–16.
Google Scholar
De Sordi L, Lourenço M, Debarbieux L. The Battle Within: interactions of Bacteriophages and Bacteria in the Gastrointestinal Tract. Cell Host Microbe. 2019;25:210–8.
Google Scholar
Scanlan PD. Bacteria–Bacteriophage Coevolution in the Human Gut: implications for Microbial Diversity and Functionality. Trends Microbiol. 2017;25:614–23.
Google Scholar
Breitbart M. Marine viruses: truth or dare. Annu Rev Mar Sci. 2012;4:425–48.
Google Scholar
Pratama AA, van Elsas JD. The ‘neglected’ soil virome–potential role and impact. Trends Microbiol. 2018;26:649–62.
Google Scholar
Lourenço M, De Sordi L, Debarbieux L. The diversity of bacterial lifestyles hampers bacteriophage tenacity. Viruses. 2018;10:1–11.
Google Scholar
Martiny JBH, Riemann L, Marston MF, Middelboe M. Antagonistic Coevolution of Marine Planktonic Viruses and Their Hosts. Annu Rev Mar Sci. 2014;6:393–414.
Google Scholar
Díaz-Muñoz SL, Koskella B. Bacteria–Phage Interactions in Natural Environments. In: Sariaslani S, Gadd GM, editors. Advances in Applied Microbiology. Cambridge, MA:Academic Press; 2014. p.135–83.
Avrani S, Schwartz DA, Lindell D. Virus-host swinging party in the oceans. Mob Genet Elem. 2012;2:88–95.
Google Scholar
Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-Offs between Competition and Defense Specialists among Unicellular Planktonic Organisms: the “Killing the Winner” Hypothesis Revisited. Microbiol Mol Biol Rev. 2010;74:42–57.
Google Scholar
Hansen MF, Svenningsen SL, Røder HL, Middelboe M, Burmølle M. Big Impact of the Tiny: bacteriophage–bacteria Interactions in Biofilms. Trends Microbiol. 2019;27:739–52.
Google Scholar
O’Brien S, Hodgson DJ, Buckling A. The interplay between microevolution and community structure in microbial populations. Curr Opin Biotechnol. 2013;24:821–5.
Google Scholar
Brockhurst MA, Koskella B. Experimental coevolution of species interactions. Trends Ecol Evol. 2013;28:367–75.
Google Scholar
Geredew Kifelew L, Mitchell JG, Speck P. Mini-review: efficacy of lytic bacteriophages on multispecies biofilms. Biofouling. 2019;35:472–81.
Google Scholar
Miki T, Jacquet S. Complex interactions in the microbial world: Underexplored key links between viruses, bacteria and protozoan grazers in aquatic environments. Aquat Micro Ecol. 2008;51:195–208.
Google Scholar
Johnke J, Cohen Y, de Leeuw M, Kushmaro A, Jurkevitch E, Chatzinotas A. Multiple micro-predators controlling bacterial communities in the environment. Curr Opin Biotechnol. 2014;27:185–90.
Google Scholar
Hall AR, Ashby B, Bascompte J, King KC. Measuring Coevolutionary Dynamics in Species-Rich Communities. Trends Ecol Evol. 2020;35:539–50.
Google Scholar
Strauss SY. Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos. 2014;123:257–66.
Google Scholar
Strauss SY, Irwin RE. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst. 2004;35:435–66.
Google Scholar
Inouye B, Stinchcombe JR. Relationships between ecological interaction modifications and diffuse coevolution: similarities, differences, and causal links. Oikos. 2011;95:353–60.
Google Scholar
Barraclough TG. How Do Species Interactions Affect Evolutionary Dynamics Across Whole Communities? Annu Rev Ecol Evol Syst. 2015;46:25–48.
Google Scholar
Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.
Google Scholar
Gómez P, Bennie J, Gaston KJ, Buckling A. The Impact of Resource Availability on Bacterial Resistance to Phages in Soil. PLoS ONE. 2015;10:e0123752.
Google Scholar
Gorter FA, Scanlan PD, Buckling A. Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments. Biol Lett. 2016;12:20150879.
Google Scholar
Scanlan JG, Hall AR, Scanlan PD. Impact of bile salts on coevolutionary dynamics between the gut bacterium Escherichia coli and its lytic phage PP01. Infect Genet Evol. 2019;73:425–32.
Google Scholar
Gómez P, Buckling A. Bacteria-phage antagonistic coevolution in soil. Science. 2011;332:106–9.
Google Scholar
Weinbauer MG, Rassoulzadegan F. Are viruses driving microbial diversification and diversity? Environ Microbiol. 2004;6:1–11.
Google Scholar
Johnke J, Baron M, de Leeuw M, Kushmaro A, Jurkevitch E, Harms H, et al. A generalist protist predator enables coexistence in multitrophic predator-prey systems containing a phage and the bacterial predator Bdellovibrio. Front Ecol Evol. 2017;5:1–12.
Google Scholar
R Core Team. R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2020.
Mumford R, Friman VP. Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy. Evol Appl. 2017;10:161–9.
Google Scholar
Connell JH. The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology. 1961;42:710–23.
Google Scholar
Vellend M. Conceptual Synthesis in Community Ecology. Q Rev Biol. 2010;85:183–206.
Google Scholar
Alseth EO, Pursey E, Lujan AM, McLeod I, Rollie C, Westra ER. Bacterial biodiversity drives the evolution of CRISPR-based phage resistance in Pseudomonas aeruginosa. Nature. 2019;574:549–74.
Google Scholar
Goldhill DH, Turner PE. The evolution of life history trade-offs in viruses. Curr Opin Virol. 2014;8:79–84.
Google Scholar
Keen EC. Tradeoffs in bacteriophage life histories. Bacteriophage. 2014;4:e28365.
Google Scholar
Gómez P, Buckling A. Real-time microbial adaptive diversification in soil. Ecol Lett. 2013;16:650–5.
Google Scholar
Houte S, van, Buckling A, Westra ER. Evolutionary Ecology of Prokaryotic Immune Mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.
Google Scholar
Middelboe M, Hagström A, Blackburn N, Sinn B, Fischer U, Borch NH, et al. Effects of bacteriophages on the population dynamics of four strains of pelagic marine bacteria. Micro Ecol. 2001;42:395–406.
Google Scholar
Gómez P, Buckling A. Coevolution with phages does not influence the evolution of bacterial mutation rates in soil. ISME J. 2013;7:2242–4.
Google Scholar
De Sordi L, Khanna V, Debarbieux L. The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses. Cell Host Microbe. 2017;22:801–8.e3.
Google Scholar
De Sordi L, Lourenço M, Debarbieux L. “I will survive”: A tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes. 2019;10:92–9.
Google Scholar
Landsberger M, Gandon S, Meaden S, Chabas H, Buckling A, Westra ER, et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell. 2018;174:908–16.
Google Scholar
Westra ER, van Houte S, Oyesiku-Blakemore S, Makin B, Broniewski JM, Best A, et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr Biol. 2015;25:1043–9.
Google Scholar
Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol. 2014;1:307–31.
Google Scholar
Rostøl JT, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe. 2019;25:184–94.
Google Scholar
Burmeister AR, Turner PE. Trading-off and trading-up in the world of bacteria–phage evolution. Curr Biol. 2020;30:R1120–R1124.
Google Scholar
Plummer M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Vienna, Austria: Proc. 3rd Int. Workshop Distrib. Stat. Comput; 2003. p. 1–10.
Wickham H. ggplot2: elegant Graphics for Data Analysis. Verlag New York: Springer; 2016.
Wickham H. tidyr: Tidy Messy Data. 2020.
Plummer M. rjags: Bayesian Graphical Models using MCMC. 2019.
Wickham H, François R, Henry L, Müller K. dplyr: A Grammar of Data Manipulation. 2020.
Gandon S, Buckling A, Decaestecker E, Day T. Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol. 2008;21:1861–6.
Google Scholar
Source: Ecology - nature.com