in

Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe

  • 1.

    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484–1241484 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 2.

    Treves, A. & Karanth, K. U. Human–carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).

    Article 

    Google Scholar 

  • 3.

    Linnell, J. D. C. & Boitani, L. Building biological realism into wolf management policy: The development of the population approach in Europe. Hystrix Ital. J. Mammal. 23, 80–91 (2011).

    Google Scholar 

  • 4.

    Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 224, 355–365 (2018).

    Article 

    Google Scholar 

  • 5.

    Breitenmoser-Würsten, C., Vandel, J.-M., Zimmermann, F. & Breitenmoser, U. Demography of lynx Lynx lynx in the Jura Mountains. Wildl. Biol. 13, 381–392 (2007).

    Article 

    Google Scholar 

  • 6.

    Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    O’Connell, A., Nichols, J. D. & Karanth, K. U. Camera Traps in Animal Ecology: Methods and Analyses. (Springer Tokyo, 2011).

  • 8.

    Noss, A. J. et al. A Camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in Bolivian Dry Forests. Tapir Cons. 12, 9 (2003).

    Google Scholar 

  • 9.

    Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 11 (1998).

    Article 

    Google Scholar 

  • 10.

    Satter, C. B., Augustine, B. C., Harmsen, B. J., Foster, R. J. & Kelly, M. J. Sex‐specific population dynamics of ocelots in Belize using open population spatial capture–recapture. Ecosphere 10, e02792 (2019).

    Article 

    Google Scholar 

  • 11.

    Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38, 148–154 (2004).

    Article 

    Google Scholar 

  • 12.

    Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 8, 232–243 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture. (Elsevier, 2014).

    Google Scholar 

  • 14.

    Chandler, R. B. & Clark, J. D. Spatially explicit integrated population models. Methods Ecol. Evol. 5, 1351–1360 (2014).

    Article 

    Google Scholar 

  • 15.

    Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe (EuropeanCommission, 2013).

  • 16.

    Magg, N. et al. Habitat availability is not limiting the distribution of the Bohemian–Bavarian lynx Lynx lynx population. Oryx 50, 742–752 (2016).

    Article 

    Google Scholar 

  • 17.

    Müller, J. et al. Protected areas shape the spatial distribution of a European lynx population more than 20 years after reintroduction. Biol. Conserv. 177, 210–217 (2014).

    Article 

    Google Scholar 

  • 18.

    Bull, J. K. et al. The effect of reintroductions on the genetic variability in Eurasian lynx populations: The cases of Bohemian–Bavarian and Vosges–Palatinian populations. Conserv. Genet. 17, 1229–1234 (2016).

    Article 

    Google Scholar 

  • 19.

    Walston, J. et al. Bringing the tiger back from the brink—The six percent solution. PLoS Biol. 8, e1000485 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Schmidt, K., Jędrzejewski, W. & Okarma, H. Spatial organization and social relations in the Eurasian lynx population in Bialowieza Primeval Forest, Poland. Acta Theriol. (Warsz.) 42, 289–312 (1997).

    Article 

    Google Scholar 

  • 21.

    Bunnefeld, N., Linnell, J. D. C., Odden, J., van Duijn, M. A. J. & Andersen, R. Risk taking by Eurasian lynx (Lynx lynx) in a human-dominated landscape: Effects of sex and reproductive status. J. Zool. 270, 31–39 (2006).

    Google Scholar 

  • 22.

    Gaillard, J.-M., Nilsen, E. B., Odden, J., Andrén, H. & Linnell, J. D. C. One size fits all: Eurasian lynx females share a common optimal litter size. J. Anim. Ecol. 83, 107–115 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 23.

    Nilsen, E. B., Linnell, J. D. C., Odden, J., Samelius, G. & Andrén, H. Patterns of variation in reproductive parameters in Eurasian lynx (Lynx lynx). Acta Theriol. (Warsz.) 57, 217–223 (2012).

    Article 

    Google Scholar 

  • 24.

    O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139 (2003).

    Article 

    Google Scholar 

  • 25.

    Cailleret, M., Heurich, M. & Bugmann, H. Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For. Ecol. Manag. 328, 179–192 (2014).

    Article 

    Google Scholar 

  • 26.

    Heurich, M. et al. Country, cover or protection: What shapes the distribution of red deer and roe deer in the Bohemian Forest Ecosystem?. PLoS ONE 10, e0120960 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    van Beeck Calkoen, S. T. S. et al. The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. For. Ecol. Manag. 451, 117483 (2019).

    Article 

    Google Scholar 

  • 28.

    Wölfl, M. et al. Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriol. 46, 181–194 (2001).

    Article 

    Google Scholar 

  • 29.

    Mináriková, T. et al. Lynx monitoring report for Bohemian–Bavarian–Austrian lynx population for lynx year 2017 (INTERREG Central Europe, 2019).

  • 30.

    Weingarth, K. et al. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture–recapture techniques in a German national park. Anim. Biodivers. Conserv. 35, 197–207 (2012).

    Article 

    Google Scholar 

  • 31.

    Belotti, E. et al. Patterns of lynx predation at the interface between protected areas and multi-use landscapes in Central Europe. PLoS ONE 10, e0138139 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 32.

    Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).

    Article 

    Google Scholar 

  • 33.

    Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Natal dispersal of Eurasian lynx ( Lynx lynx ) in Switzerland. J. Zool. 267, 381 (2005).

    Article 

    Google Scholar 

  • 34.

    Andrén, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32 (2006).

    Article 

    Google Scholar 

  • 35.

    Gimenez, O. et al. Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges Mountains. Ecol. Evol. 9, 11707–11715 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Pesenti, E. & Zimmermann, F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal. 94, 73–81 (2013).

    Article 

    Google Scholar 

  • 37.

    Weingarth, K. et al. Hide and seek: Extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 24, 2935–2952 (2015).

    Article 

    Google Scholar 

  • 38.

    Pollock, K. H. A capture–recapture design robust to unequal probability of capture. J. Wildl. Manag. 46, 752 (1982).

    Article 

    Google Scholar 

  • 39.

    Augustine, B. benaug/OpenPopSCR. (2019). https://github.com/benaug/OpenPopSCR.

  • 40.

    Ergon, T. & Gardner, B. Separating mortality and emigration: Modelling space use, dispersal and survival with robust-design spatial capture–recapture data. Methods Ecol. Evol. 5, 1327–1336 (2014).

    Article 

    Google Scholar 

  • 41.

    Schaub, M. & Royle, J. A. Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models. Methods Ecol. Evol. 5, 1316–1326 (2014).

    Article 

    Google Scholar 

  • 42.

    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2005).

    Google Scholar 

  • 43.

    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).

    MathSciNet 

    Google Scholar 

  • 44.

    Efford, M. secr 4.1—Spatially explicit capture–recapture in R. (2019). https://cran.microsoft.com/snapshot/2019-12-24/web/packages/secr/vignettes/secr-overview.pdf.

  • 45.

    Burnham, K. P. & Overton, W. S. Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927–936 (1979).

    Article 

    Google Scholar 

  • 46.

    Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer, 2002).

    MATH 

    Google Scholar 

  • 47.

    O’Brien, T. G. Abundance, density and relative abundance: A conceptual framework. In Camera Traps in Animal Ecology (eds O’Connell, A. F. et al.) 71–96 (Springer Japan, 2011). https://doi.org/10.1007/978-4-431-99495-4_6.

    Chapter 

    Google Scholar 

  • 48.

    Rovero, F. & Zimmermann, F. Camera Trapping for Wildlife Research (Pelagic Publishing Ltd, 2016).

    Google Scholar 

  • 49.

    Augustine, B. C. et al. Sex-specific population dynamics and demography of capercaillie (Tetrao urogallus L.) in a patchy environment. Popul. Ecol. 62, 80–90 (2020).

    Article 

    Google Scholar 

  • 50.

    Duľa, M. et al. Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range. Sci. Rep. 11, 9236 (2021).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 51.

    Avgan, B., Zimmermann, F., Güntert, M., Arıkan, F. & Breitenmoser, U. The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildl. Biol. 20, 217–221 (2014).

    Article 

    Google Scholar 

  • 52.

    Mengüllüoğlu, D., Ambarlı, H., Berger, A. & Hofer, H. Foraging ecology of Eurasian lynx populations in southwest Asia: Conservation implications for a diet specialist. Ecol. Evol. 8, 9451–9463 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Heurich, M. et al. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, e114143 (2014).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 54.

    Jedrzejewski, W. et al. Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus). Ecography 19, 122–138 (1996).

    Article 

    Google Scholar 

  • 55.

    Gardner, B., Sollmann, R., Kumar, N. S., Jathanna, D. & Karanth, K. U. State space and movement specification in open population spatial capture–recapture models. Ecol. Evol. 8, 10336–10344 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    López-Bao, J. V. et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 9, 8903 (2019).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 57.

    Engleder, T. et al. First breeding record of a 1-year-old female Eurasian lynx. Eur. J. Wildl. Res. 65, 17 (2019).

    Article 

    Google Scholar 

  • 58.

    Heurich, M. et al. Selective predation of a stalking predator on ungulate prey. PLoS ONE 11, e0158449 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 59.

    Andrén, H. & Liberg, O. Large impact of Eurasian lynx predation on roe deer population dynamics. PLoS ONE 10, e0120570 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 60.

    Elmhagen, B. & Rushton, S. P. Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?. Ecol. Lett. 10, 197–206 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 61.

    Wikenros, C. et al. Fear or food—Abundance of red fox in relation to occurrence of lynx and wolf. Sci. Rep. 7, 9059 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 62.

    Helldin, J. O., Liberg, O. & Glöersen, G. Lynx (Lynx lynx) killing red foxes (Vulpes vulpes) in boreal Sweden? Frequency and population effects. J. Zool. 270, 657–663 (2006).

    Article 

    Google Scholar 

  • 63.

    Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution—Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).

    Article 

    Google Scholar 

  • 64.

    Linnell, J. D. C., Kaczensky, P., Wotschikowsky, U., Lescureux, N. & Boitani, L. Framing the relationship between people and nature in the context of European conservation: Relationship between people and nature. Conserv. Biol. 29, 978–985 (2015).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A robot that finds lost items

    Isotope data from amino acids indicate Darwin’s ground sloth was not an herbivore