in

Determining future aflatoxin contamination risk scenarios for corn in Southern Georgia, USA using spatio-temporal modelling and future climate simulations

  • 1.

    Reynolds, M. P. & Ortiz, R. Climate change and crop production, Chap. Adapting Crops to Climate Change: A Summary. 1–8 (CABI, 2010).

  • 2.

    Lal, R. et al. Management to mitigate and adapt to climate change. J. Soil Water Conserv. 66, 276–285 (2011).

    Article 

    Google Scholar 

  • 3.

    FAO. A Framework for Land Evaluation. Food and Agriculture Organization of the United Nations, Soils Bulletin No.32. (FAO, Rome, 1976).

  • 4.

    FAO. Land Evaluation. Towards a Revised Framework, Food and Agriculture Organization of the United Nations, Land and Water Discussion Paper No.6. (FAO, Rome, 2007).

  • 5.

    Abbas, H., Shier, W. & Cartwright, R. Effect of temperature, rainfall and planting date on aflatoxin and fumonisin contamination in commercial Bt and non-Bt corn hybrids in Arkansas. Phytoprotection 88, 41–50 (2007).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Brenneman, T. B., Wilson, D. M. & Beaver, R. W. Effects of diniconazole on Aspergillus populations and aflatoxin formation in peanut under irrigated and nonirrigated conditions. Plant Dis. 77, 608–612 (1993).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Wang, T., Zhang, E., Chen, X., Li, L. & Liang, X. Identification of seed proteins associated with resistance to preharvested aflatoxin contamination in peanut (Arachis hypogaea). BMC Plant Biol. 10, 267 (2010).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Gasperini, A. M. et al. Resilience of biocontrol for aflatoxin minimization strategies: Climate change abiotic factors may affect control in non-GM and GM-maize cultivars. Front. Microbiol. 10, 2525 (2019).

    Article 

    Google Scholar 

  • 9.

    Barrett, J. R. Liver cancer and aflatoxin. Environ. Heal. Perspect. 113, 837–838 (2005).

    Google Scholar 

  • 10.

    US Food and Drug Administration. Bad Bug Book, Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd edn. (Center for Food Safety Applied Nutrition, 2004).

  • 11.

    Marchese, S. et al. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins 10, 214 (2018).

    Article 

    Google Scholar 

  • 12.

    Guo, B., Chen, Z.-Y., Lee, R. D. & Scully, B. T. Drought stress and preharvest aflatoxin contamination in agricultural commodity: Genetics, genomics and proteomics. J. Integr. Plant Biol. 50, 1281–1291 (2008).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Horn, B. W. et al. Sexual reproduction in Aspergillus flavus sclerotia naturally produced in corn. Phytopathology 104, 75–85 (2014).

    Article 

    Google Scholar 

  • 14.

    Payne, G. A. & Widstrom, N. W. Aflatoxin in maize. Critical Rev. Plant Sci. 10, 423–440 (1992).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Kerry, R., Ortiz, B. V., Ingram, B. R. & Scully, B. T. A spatio-temporal investigation of risk factors for aflatoxin contamination of corn in southern Georgia, USA using geostatistical methods. Crop. Prot. 94, 144–158 (2017).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Yoo, E., Kerry, R., Ingram, B., Ortiz, B. & Scully, B. Defining and characterizing Aflatoxin contamination risk areas for corn in Georgia, USA: Adjusting for collinearity and spatial correlation. Spatial Stat. 28, 84–104 (2018).

    MathSciNet 
    Article 

    Google Scholar 

  • 17.

    FAO (Food and Agriculture Organization). Worldwide regulations for mycotoxins in food and feed in 2003. in FAO Food and Nutrition Paper 81 (2004).

  • 18.

    Mazumder, P. M. & Sasmal, D. Mycotoxins—Limits and regulations. Anc. Sci. Life 20, 1 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    US Food and Drug Administration. CPG Sec. 683.100 Action Levels for Aflatoxins in Animal Feeds. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-683100-action-levels-aflatoxinsanimal-feeds (2019).

  • 20.

    European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 364 (2006).

  • 21.

    Commission, E. Commission Regulation (EC) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off. J. Eur. Union 50, 8–12 (2010).

    Google Scholar 

  • 22.

    Medina, A., Rodriguez, A. & Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 5, 348 (2014).

    Article 

    Google Scholar 

  • 23.

    Medina, A., Rodríguez, A., Sultan, Y. & Magan, N. Climate change factors and Aspergillus flavus: Effects on gene expression, growth and aflatoxin production. World Mycotoxin J. 8, 171–179 (2015).

    Article 

    Google Scholar 

  • 24.

    Garcia-Cela, E. et al. Unveiling the effect of interacting forecasted abiotic factors on growth and Aflatoxin B1 production kinetics by Aspergillus flavus. Fungal Biol. (2020).

  • 25.

    Widstrom, N. W., Forster, M. J., Martin, W. K. & Wilson, D. M. Agronomic performance in the southeastern United States of maize hybrids containing tropical germplasm. Maydica 41, 59–63 (1996).

    Google Scholar 

  • 26.

    Damianidis, D. et al. Evaluating a generic drought index as a predictive tool for aflatoxin contamination of corn: From plot to regional level. Crop Prot. 113, 64–74 (2018).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Salvacion, A. et al. Effect of rainfall and maximum temperature on corn aflatoxin in the southeastern U. S coastal plain. in Proceedings of the Climate Information for Managing Risks. Orlando, Florida (2011).

  • 28.

    Damianidis, D. et al. Minimum temperature, rainfall, and agronomic management impacts on corn grain aflatoxin contamination. Agron. J 110(5), 1697–1708 (2018).

    Article 

    Google Scholar 

  • 29.

    Navarro, F., Ingram, B., Kerry, R., Ortiz, B. V. & Scully, B. T. A web-based GIS decision support tool for determining corn aflatoxin risk: A case study data from Southern Georgia, USA. Adv. Anim. Biosci. 8, 718 (2017).

    Article 

    Google Scholar 

  • 30.

    Battilani, P. et al. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Nat. Sci. Rep. 6, 24328 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109(1), 77–94 (2011).

  • 32.

    Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. PNAS USA 117(33), 19656–19657 (2012).

  • 33.

    Stocker, T. F. et al. Climate change 2013: The physical science basis. in Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (2014).

  • 34.

    Wacoo, A. P., Wendiro, D., Vuzi, P. C. & Hawumba, J. F. Methods for detection of aflatoxins in agricultural food crops. J. Appl. Chem. 2014, 706291 (2014).

  • 35.

    Kerry, R. & Oliver, M. A. Determining the effect of asymmetric data on the variogram. I. Underlying asymmetry. Comput. Geosci. 33, 1212–1232 (2007).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Webster, R. & Oliver, M. A. Sample adequately to estimate variograms of soil properties. J. Soil Sci. 43(1), 177–192 (1992).

    Article 

    Google Scholar 

  • 37.

    Monestiez, P., Dubroca, L., Bonnin, E., Durbec, J. P. & Guinet, C. Geostatistical modelling of spatial distribution of Balaenoptera physalus in the Northwestern Mediterranean Sea from sparse count data and heterogeneous observation efforts. Ecol. Model. 193, 615–628 (2006).

    Article 

    Google Scholar 

  • 38.

    Hegewisch, K. C. & Abatzoglou, J. T. ‘Future Time Series’ Web Tool. NW Climate Toolbox. https://climatetoolbox.org/. Accessed June 2019.

  • 39.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma

    Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass