in

Determinizing the contributions of human activities and climate change on greening in the Beijing–Tianjin–Hebei Region, China

  • 1.

    Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. https://doi.org/10.1029/2001RG000103 (2002).

    Article 

    Google Scholar 

  • 2.

    Lamchin, M., Park, T., Lee, J. & Lee, W. Monitoring of vegetation dynamics in the Mongolia using MODIS NDVIs and their relationship to rainfall by Natural Zone. J. Indian Soc. Remote 43, 325–337 (2014).

    Article 

    Google Scholar 

  • 3.

    Zhang, Y., Liu, L. Y., Liu, Y., Zhang, M. & An, C. B. Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015. Sci. Rep. https://doi.org/10.1038/s41598-021-84399-z (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Piao, S. L., Wang, X. H., Park, T. & Chen, C. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article 
    ADS 

    Google Scholar 

  • 5.

    Zhu, Z. C., Piao, S. L., Myneni, R. B. & Huang, M. T. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 6.

    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article 

    Google Scholar 

  • 7.

    Fang, H. Y., Li, Q. Y. & Cai, Q. G. A study on the vegetation recovery and crop pattern adjustment on the Loess Plateau of China. Afr. J. Microbiol. Res. 5, 1414–1419 (2011).

    Article 

    Google Scholar 

  • 8.

    Jiang, C., Zhang, H. Y., Tang, Z. P. & Labzovskii, L. Evaluating the coupling effects of climate variability and vegetation restoration on ecosystems of the Loess Plateau, China. Land Use Policy 69, 134–148 (2017).

    Article 

    Google Scholar 

  • 9.

    Zhang, H. Y., Fan, J. W., Cao, W., Zhong, H. P. & Harris, W. Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China. Ecol. Eng. 116, 67–79 (2018).

    Article 

    Google Scholar 

  • 10.

    Liu, Y. X., Lü, Y. H., Fu, B. J., Harris, P. & Wu, L. H. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci. Total Environ. 650, 1029–1040 (2019).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 11.

    Wang, J. F., Zhang, T. L. & Fu, B. J. A measure of spatial stratified heterogeneity. Ecol. Indic. 67, 250–256 (2016).

    Article 

    Google Scholar 

  • 12.

    Jiang, Y. T., Sun, Y. J., Zhang, L. P. & Wang, X. L. Influence factor analysis of soil heavy metal Cd based on the GeoDetector. Stoch. Environ. Res. Risk Assess. 34, 921–930 (2020).

    Article 

    Google Scholar 

  • 13.

    Su, Y., Li, T. X., Cheng, S. K. & Wang, X. Spatial distribution exploration and driving factor identification for soil salinisation based on geodetector models in coastal area. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2020.105961 (2020).

    Article 

    Google Scholar 

  • 14.

    Yan, S. J., Wang, H. & Jiao, K. W. Spatiotemporal dynamic of NDVI in the Beijing–Tianjin–Hebei region based on MODIS data and quantitative attribution. J. Geo-inf. Sci. 21, 767–780 (2019).

    Google Scholar 

  • 15.

    Evans, J. & Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 57, 535–554 (2007).

    Article 

    Google Scholar 

  • 16.

    Wessels, K. J. et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 68, 271–297 (2007).

    Article 
    ADS 

    Google Scholar 

  • 17.

    Teng, M. J. et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136691 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Shi, S. Y. et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142419 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Peng, J., Jiang, H., Liu, Q. H., Green, S. & Quine, T. Human activity vs. climate change, distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144297 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Xu, D. Y., Li, C. L., Song, X. & Ren, H. Y. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. CATENA 123, 11–22 (2014).

    Article 

    Google Scholar 

  • 21.

    Sun, Y. L., Yang, Y. L., Zhang, L. & Wang, Z. L. The relative roles of climate variations and human activities in vegetation change in North China. Phys. Chem. Earth 87–88, 67–78 (2015).

    Article 
    ADS 

    Google Scholar 

  • 22.

    Liu, B., Sun, Y. L., Wang, Z. L. & Zhao, T. B. Analysis of the vegetation cover change and the relative role of its influencing factors in North China. J. Nat. Res. 30, 12–23 (2015).

    Google Scholar 

  • 23.

    Huang, L., Zheng, Y. H. & Xiao, T. Regional differentiation of ecological conservation and its zonal suitability at the county level in China. J. Geogr. Sci. 28, 46–58 (2018).

    Article 

    Google Scholar 

  • 24.

    Pan, M., Chen, T. W., Huang, L. & Cao, W. Spatial and temporal variations in ecosystem services and its driving factors analysis in Jing-Jin-Ji region. Acta Ecol. Sin. 40, 5151–5167 (2020).

    Google Scholar 

  • 25.

    Zhou, Q., Zhao, X. & Wu, D. H. Impact of urbanization and climate on vegetation coverage in the Beijing–Tianjin–Hebei Region of China. Remote Sens. https://doi.org/10.3390/rs11202452 (2019).

    Article 

    Google Scholar 

  • 26.

    Pantazi, M., Vasilescu, A. M., Mihai, A. & Gurau, D. Statistical-mathematical processing of anthropometric foot parameters and establishing simple and multiple correlations. Part 1, statistical analysis of foot size parameters. J. Leather Footwear 17, 199–208 (2017).

    Article 

    Google Scholar 

  • 27.

    Krishnan, S. R., Magimai-Doss, M. & Seelamantula, C. S. A Savitzky-Golay filtering perspective of dynamic feature computation. IEEE Signal Proc. Lett. 20, 281–284 (2013).

    Article 
    ADS 

    Google Scholar 

  • 28.

    Li, Z., Zhang, Y., Zhu, Q. K., He, Y. M. & Yao, W. J. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology 228, 462–469 (2015).

    Article 
    ADS 

    Google Scholar 

  • 29.

    Chen, J., Ban, Y. F. & Li, S. N. China, Open access to Earth land-cover map. Nature 514, 434–434 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 30.

    Alijani, B., Mahmoudi, P. & Chogan, A. J. A study of annual and seasonal precipitation trends in Iran using a nonparametric method (Sen’s slope estimator). For. Ecol. Manag. 121, 137–146 (2012).

    Google Scholar 

  • 31.

    Rahman, A. U. & Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s Slope approach. Clim. Dynam. 48, 783–797 (2017).

    Article 
    ADS 

    Google Scholar 

  • 32.

    Lin, X. S., Tang, J., Li, Z. Y. & Li, H. Y. Vegetation greenness modelling in response to interannual precipitation and temperature changes between 2001 and 2012 in Liao River Basin in Jilin Province, China. Springerplus https://doi.org/10.1186/s40064-016-2737-9 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Lawrance, A. J. Partial and multiple correlation for time series. Am. Stat. 33, 127–130 (1979).

    MATH 

    Google Scholar 

  • 34.

    Wetzels, R. & Wagenmakers, E. J. A default Bayesian hypothesis test for correlations and partial correlations. Psychon. B Rev. 19, 1057–1064 (2012).

    Article 

    Google Scholar 

  • 35.

    Anghelache, C., Anghel, M. G., Prodan, L., Sacala, C. & Popovici, M. Multiple linear regression model used in economic analyses. Roman. Stat. Rev. Suppl. 62, 120–127 (2014).

    Google Scholar 

  • 36.

    Miao, L. J., Liu, Q., Fraser, R., He, B. & Cui, X. F. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011. Phys. Chem. Earth 87–88, 50–59 (2015).

    Article 
    ADS 

    Google Scholar 

  • 37.

    Tang, Y. Z., Shao, Q. Q., Liu, J. Y. & Zhang, H. Y. Did ecological restoration hit its mark? Monitoring and assessing ecological changes in the Grain for Green Program Region using multi-source satellite images. Remote Sens. https://doi.org/10.3390/rs11030358 (2019).

    Article 

    Google Scholar 

  • 38.

    Cai, D. W. et al. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbde9 (2020).

    Article 

    Google Scholar 

  • 39.

    Yao, N., Huang, C. H., Yang, J., Bosch, C. & Jia, Z. Combined effects of impervious surface change and large-scale afforestation on the surface urban heat island intensity of Beijing, China based on remote sensing analysis. Remote Sens. https://doi.org/10.3390/rs12233906 (2020).

    Article 

    Google Scholar 

  • 40.

    Wu, Z. T., Wu, J. J., He, B., Liu, J. H. & Wang, Q. F. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing–Tianjin Sand Source Region, China. Environ. Sci. Technol. 48, 12108–12117 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 41.

    Yang, X. C. et al. Remote sensing monitoring of grassland vegetation growth in the Beijing–Tianjin sandstorm source project area from 2000 to 2010. Ecol. Indic. 51, 244–251 (2015).

    Article 

    Google Scholar 

  • 42.

    Li, X. S., Wang, H. Y., Zhou, S. F., Sun, B. & Gao, Z. H. Did ecological engineering projects have a significant effect on large-scale vegetation restoration in Beijing–Tianjin Sand Source Region, China? A remote sensing approach. Chin. Geogr. Sci. 26, 216–228 (2016).

    Article 

    Google Scholar 

  • 43.

    Hu, S. et al. Detecting and attributing vegetation changes in Taihang Mountain, China. J. Mt. Sci. 16, 337–350 (2019).

    Article 

    Google Scholar 

  • 44.

    Li, D. et al. Identification of the roles of climate factors, engineering construction, and agricultural practices in vegetation dynamics in the Lhasa River Basin, Tibetan Plateau. Remote Sens. https://doi.org/10.3390/rs12111883 (2020).

    Article 

    Google Scholar 

  • 45.

    Sun, H. Y. et al. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agr. Water Manag. 97, 1139–1145 (2010).

    Article 

    Google Scholar 

  • 46.

    Tao, Y., Li, F., Crittenden, J. C., Lu, Z. M. & Sun, X. Environmental impacts of China’s urbanization from 2000 to 2010 and management implications. Environ. Manag. 57, 498–507 (2016).

    Article 
    ADS 

    Google Scholar 

  • 47.

    Jia, G. J., Epstein, H. E. & Balser, A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob. Change Biol. 12, 42–55 (2010).

    Article 
    ADS 

    Google Scholar 

  • 48.

    Wen, Y. Y., Liu, X. P., Xin, Q. C. & Wu, J. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018JG004751 (2019).

    Article 

    Google Scholar 

  • 49.

    Zhao, A. Z., Yu, Q. Y., Feng, L. L., Zhang, A. P. & Pei, T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation, A case study in the Chinese Loess Plateau. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2020.110214 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Energy Initiative awards seven Seed Fund grants for early-stage energy research

    Worker-dependent gut symbiosis in an ant