in

Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures

  • 1.

    Weishampel, D. B., Dodson, P. & Osmólska, H. The Dinosauria 2nd edn (University of California Press, 2004).

  • 2.

    Fastovsky, D. E. & Weishampel, D. B. The Evolution and Extinction of the Dinosaurs (Cambridge University Press, 2005).

  • 3.

    Brusatte, S. L. et al. The extinction of the dinosaurs. Biol. Rev. 90, 628–642 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Chiarenza, A. A. et al. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proc. Natl Acad. Sci. USA 117, 17084–17093 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Russell, D. A. The gradual decline of the dinosaurs—fact or fallacy? Nature 307, 360–361 (1984).

    ADS 
    Article 

    Google Scholar 

  • 8.

    Sloan, R. E., Rigby, J. K., Van Valen, L. M. & Gabriel, D. Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek Formation. Science 232, 629–633 (1986).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Sheehan, P. M., Fastovsky, D. E., Hoffmann, R. G., Berghaus, C. B. & Gabriel, D. L. Sudden extinction of the dinosaurs: Latest Cretaceous, upper Great Plains, USA. Science 254, 835–839 (1991).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Natl Acad. Sci. USA 113, 5036–5040 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10, 1091 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Russell, L. S. Body temperature of dinosaurs and its relationships to their extinction. J. Paleontol. 39, 497–501 (1965).

    Google Scholar 

  • 13.

    Brusatte, S. L., Butler, R. J., Prieto-Márquez, A. & Norell, M. A. Dinosaur morphological diversity and the end-Cretaceous extinction. Nat. Commun. 3, 804 (2012).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 14.

    Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Rezende, E. L., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 6, eaaw4486 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Lloyd, G. T. et al. Dinosaurs and the Cretaceous Terrestrial Revolution. Proc. R. Soc. B Biol. Sci. 275, 2483–2490 (2008).

    Article 

    Google Scholar 

  • 17.

    Gates, T. A., Prieto-Márquez, A. & Zanno, L. E. Mountain building triggered Late Cretaceous North American megaherbivore dinosaur radiation. PLoS ONE 7, e42135 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Loewen, M. A., Irmis, R. B., Sertich, J. J. W., Currie, P. J. & Sampson, S. D. Tyrant dinosaur evolution tracks the rise and fall of late Cretaceous oceans. PLoS ONE 8, e79420 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Archibald, J. D. et al. Cretaceous extinctions: Multiple causes. Science 328, 973 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Mitchell, J. S., Roopnarine, P. D. & Angielczyk, K. D. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proc. Natl Acad. Sci. USA 109, 18857–18861 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Longrich, N. R., Martill, D. M. & Andres, B. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary. PLoS Biol. 16, e2001663 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Longrich, N. R., Bhullar, B.-A. S. & Gauthier, J. A. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary. Proc. Natl Acad. Sci. USA 109, 21396–21401 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Fastovsky, D. E. et al. Shape of Mesozoic dinosaur richness. Geology 32, 877–880 (2004).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Archibald, J. D. in Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds. Keller, G. & Kerr, A. C.) 213–224 (The Geological Society of America Special Paper 505, 2014).

  • 30.

    Wang, S. C. & Dodson, P. Estimating the diversity of dinosaurs. Proc. Natl Acad. Sci. USA 103, 13601–13605 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Starrfelt, J. & Liow, L. H. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150219 (2016).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Bonsor, J. A., Barrett, P. M., Raven, T. J. & Cooper, N. Dinosaur diversification rates were not in decline prior to the K-Pg boundary. R. Soc. Open Sci. 7, 201195 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Benton, M. J., Wills, M. A. & Hitchin, R. Quality of the fossil record through time. Nature 403, 534–537 (2000).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Alroy, J. et al. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc. Natl Acad. Sci. USA 98, 6261–6266 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Close, R. A., Evers, S. W., Alroy, J. & Butler, R. J. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).

    Article 

    Google Scholar 

  • 37.

    Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).

    Article 

    Google Scholar 

  • 38.

    Close, R. A., Benson, R. B. J., Saupe, E. E., Clapham, M. E. & Butler, R. J. The spatial structure of Phanerozoic marine animal diversity. Science 368, 420–424 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Benton, M. J. Scientific methodologies in collision: The history of the study of the extinction of the dinosaurs. Evol. Biol. 24, 371–400 (1990).

    Google Scholar 

  • 40.

    Butler, R. J., Benson, R. B. J., Carrano, M. T., Mannion, P. D. & Upchurch, P. Sea level, dinosaur diversity and sampling biases: Investigating the ‘common cause’ hypothesis in the terrestrial realm. Proc. R. Soc. B Biol. Sci. 278, 1165–1170 (2011).

    Article 

    Google Scholar 

  • 41.

    Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. USA 114, 5653–5658 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction history reveals Cretaceous slab superflux as a possible cause for the mid-Cretaceous plume pulse and superswell events. Gondwana Res. 79, 125–139 (2020).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Grasby, S. E., Them, T. R., Chen, Z., Yin, R. & Ardakani, O. H. Mercury as a proxy for volcanic emissions in the geologic record. Earth Sci. Rev. 196, 102880 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Miller, K. G. et al. The Phanerozoic record of global sea level change. Science 310, 1293–1298 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Ray, D. C. et al. The magnitude and cause of short-term eustatic Cretaceous sea-level change: a synthesis. Earth Sci. Rev. 197, 102901 (2019).

    Article 

    Google Scholar 

  • 46.

    Coiffard, C., Gomez, B., Daviero-Gomez, V. & Dilcher, D. L. Rise to dominance of angiosperm pioneers in European Cretaceous environments. Proc. Natl Acad. Sci. USA 109, 20955–20959 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Chaboureau, A.-C., Sepulchre, P., Donnadieu, Y. & Franc, A. Tectonic-driven climate change and the diversification of angiosperms. Proc. Natl Acad. Sci. USA 111, 14066–14070 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).

    Article 

    Google Scholar 

  • 49.

    Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Bot. 123, 491–503 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Grossnickle, D. M. & Newham, E. Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary. Proc. R. Soc. B Biol. Sci. 283, 20160256 (2016).

    Article 

    Google Scholar 

  • 52.

    Liu, L. et al. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proc. Natl Acad. Sci. USA 114, E7282–E7290 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Arbour, V. M., Zanno, L. E. & Gates, T. A. Ankylosaurian dinosaur palaeoenvironmental associations were influenced by extirpation, sea-level fluctuation, and geodispersal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 289–299 (2016).

    Article 

    Google Scholar 

  • 54.

    Tennant, J. P., Mannion, P. D. & Upchurch, P. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nat. Commun. 7, 12737 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Lehtonen, S. et al. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Sci. Rep. 7, 4831 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Condamine, F. L., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. Proc. Natl Acad. Sci. USA 116, 20584–20590 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Signor, P. W. & Lipps, J. H. in Geological Implications of Impacts of Large Asteroids and Comets on The Earth (eds. Silver, L. T. & Schultz, P. H.) vol. 190, 291–296 (Geological Society of America Special Publication, 1982).

  • 60.

    Benson, R. B. J. Dinosaur macroevolution and macroecology. Annu. Rev. Ecol. Evol. Syst. 49, 379–408 (2018).

    Article 

    Google Scholar 

  • 61.

    Dean, C. D., Chiarenza, A. A. & Maidment, S. C. R. Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America. Palaeontology 63, 881–901 (2020).

    Article 

    Google Scholar 

  • 62.

    Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: Temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Prieto-Márquez, A., Dalla Vecchia, F. M., Gaete, R. & Galobart, À. Diversity, relationships, and biogeography of the lambeosaurine dinosaurs from the European archipelago, with description of the new aralosaurin Canardia garonnensis. PLoS ONE 8, e69835 (2013).

  • 65.

    Prieto-Márquez, A., Fondevilla, V., Sellés, A. G., Wagner, J. R. & Galobart, À. Adynomosaurus arcanus, a new lambeosaurine dinosaur from the Late Cretaceous Ibero-Armorican Island of the European archipelago. Cretac. Res. 96, 19–37 (2019).

    Article 

    Google Scholar 

  • 66.

    Longrich, N. R., Suberbiola, X. P., Pyron, R. A. & Jalil, N.-E. The first duckbill dinosaur (Hadrosauridae: Lambeosaurinae) from Africa and the role of oceanic dispersal in dinosaur biogeography. Cretac. Res. 120, 104678 (2021).

    Article 

    Google Scholar 

  • 67.

    Kobayashi, Y., Takasaki, R., Kubota, K. & Fiorillo, A. R. A new basal hadrosaurid (Dinosauria: Ornithischia) from the latest Cretaceous Kita-ama Formation in Japan implies the origin of hadrosaurids. Sci. Rep. 11, 8547 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Stubbs, T. L., Benton, M. J., Elsler, A. & Prieto-Márquez, A. Morphological innovation and the evolution of hadrosaurid dinosaurs. Paleobiology 45, 347–362 (2019).

    Article 

    Google Scholar 

  • 69.

    Reest, A. J. van der & Currie, P. J. Troodontids (Theropoda) from the Dinosaur Park Formation, Alberta, with a description of a unique new taxon: Implications for deinonychosaur diversity in North America. Can. J. Earth Sci. 54, 919–935 (2017).

  • 70.

    Hartman, S. et al. A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight. PeerJ 7, e7247 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Horner, J. R., Varricchio, D. J. & Goodwin, M. B. Marine transgressions and the evolution of Cretaceous dinosaurs. Nature 358, 59–61 (1992).

    ADS 
    Article 

    Google Scholar 

  • 72.

    O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth Sci. Rev. 172, 224–247 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 73.

    Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F. The rise and fall of the Cretaceous Hot Greenhouse climate. Glob. Planet. Change 167, 1–23 (2018).

    ADS 
    Article 

    Google Scholar 

  • 74.

    Mannion, P. D. et al. A temperate palaeodiversity peak in Mesozoic dinosaurs and evidence for Late Cretaceous geographical partitioning. Glob. Ecol. Biogeogr. 21, 898–908 (2012).

    Article 

    Google Scholar 

  • 75.

    Forster, A., Schouten, S., Baas, M. & Damsté, J. S. S. Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35, 919–922 (2007).

    ADS 
    Article 

    Google Scholar 

  • 76.

    O’Connor, L. K. et al. Late Cretaceous temperature evolution of the southern high latitudes: a TEX86 perspective. Paleoceanogr. Paleoclimatol. 34, 436–454 (2019).

    ADS 
    Article 

    Google Scholar 

  • 77.

    Linnert, C. et al. Evidence for global cooling in the Late Cretaceous. Nat. Commun. 5, 4194 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Crane, P. R. & Lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 81.

    Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. N. Phytol. 207, 425–436 (2015).

    Article 

    Google Scholar 

  • 82.

    Prokoph, A., Shields, G. A. & Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci. Rev. 87, 113–133 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 83.

    Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Barrett, P. M. Paleobiology of herbivorous dinosaurs. Annu. Rev. Earth Planet. Sci. 42, 207–230 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 85.

    Grady, J. M., Enquist, B. J., Dettweiler-Robinson, E., Wright, N. A. & Smith, F. A. Evidence for mesothermy in dinosaurs. Science 344, 1268–1272 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Eagle, R. A. et al. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs. Nat. Commun. 6, 8296 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 87.

    Paladino, F. V., Dodson, P., Hammond, J. K. & Spotila, J. R. Temperature-dependent sex determination in dinosaurs? Implications for population dynamics and extinction. in Paleobiology of the Dinosaurs (ed. Farlow, J. O.) vol. 238, 63–70 (Geological Society of America Special Papers, 1989).

  • 88.

    Vavrek, M. J. & Larsson, H. C. E. Low beta diversity of Maastrichtian dinosaurs of North America. Proc. Natl Acad. Sci. USA 107, 8265–8268 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article 

    Google Scholar 

  • 90.

    Brodie, J. F. et al. Secondary extinctions of biodiversity. Trends Ecol. Evol. 29, 664–672 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Fraser, D. et al. Investigating biotic interactions in deep time. Trends Ecol. Evol. 36, 61–75 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Mallon, J. C. Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage. Sci. Rep. 9, 15447 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 93.

    Benton, M. J. Progress and competition in macroevolution. Biol. Rev. 62, 305–338 (1987).

    Article 

    Google Scholar 

  • 94.

    Fricke, H. C. & Pearson, D. A. Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota. Paleobiology 34, 534–552 (2008).

    Article 

    Google Scholar 

  • 95.

    Mallon, J. C. & Anderson, J. S. Skull ecomorphology of megaherbivorous dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada. PLoS ONE 8, e67182 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Nordén, K. K., Stubbs, T. L., Prieto-Márquez, A. & Benton, M. J. Multifaceted disparity approach reveals dinosaur herbivory flourished before the end-Cretaceous mass extinction. Paleobiology 44, 620–637 (2018).

    Article 

    Google Scholar 

  • 97.

    Lyson, T. R. & Longrich, N. R. Spatial niche partitioning in dinosaurs from the latest Cretaceous (Maastrichtian) of North America. Proc. R. Soc. B Biol. Sci. 278, 1158–1164 (2011).

    Article 

    Google Scholar 

  • 98.

    Li, Z. et al. Ultramicrostructural reductions in teeth: Implications for dietary transition from non-avian dinosaurs to birds. BMC Evol. Biol. 20, 46 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 99.

    Cau, A. et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395–399 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 100.

    Cau, A. The body plan of Halszkaraptor escuilliei (Dinosauria, Theropoda) is not a transitional form along the evolution of dromaeosaurid hypercarnivory. PeerJ 8, e8672 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Fowler, D. W., Freedman, E. A., Scannella, J. B. & Kambic, R. E. The predatory ecology of Deinonychus and the origin of flapping in birds. PLoS ONE 6, e28964 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 102.

    Frederickson, J. A., Engel, M. H. & Cifelli, R. L. Ontogenetic dietary shifts in Deinonychus antirrhopus (Theropoda; Dromaeosauridae): Insights into the ecology and social behavior of raptorial dinosaurs through stable isotope analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 552, 109780 (2020).

    Article 

    Google Scholar 

  • 103.

    O’Connor, J. et al. Microraptor with ingested lizard suggests non-specialized digestive function. Curr. Biol. 29, 2423–2429 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 104.

    King, J. L., Sipla, J. S., Georgi, J. A., Balanoff, A. M. & Neenan, J. M. The endocranium and trophic ecology of Velociraptor mongoliensis. J. Anat. 237, 861–869 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 105.

    Owocki, K., Kremer, B., Cotte, M. & Bocherens, H. Diet preferences and climate inferred from oxygen and carbon isotopes of tooth enamel of Tarbosaurus bataar (Nemegt Formation, Upper Cretaceous, Mongolia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 537, 109190 (2020).

    Article 

    Google Scholar 

  • 106.

    Dalman, S. & Lucas, S. New evidence for cannibalism in tyrannosaurid dinosaurs from the Late Cretaceous of New Mexico. N. Mex. Mus. Nat. Hist. Sci. Bull. 82, 39–56 (2021).

    Google Scholar 

  • 107.

    Frederickson, J. A., Engel, M. H. & Cifelli, R. L. Niche partitioning in theropod dinosaurs: Diet and habitat preference in predators from the uppermost Cedar Mountain Formation (Utah, U.S.A.). Sci. Rep. 8, 17872 (2018).

  • 108.

    Hassler, A. et al. Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs. Proc. R. Soc. B Biol. Sci. 285, 20180197 (2018).

  • 109.

    Schroeder, K., Lyons, S. K. & Smith, F. A. The influence of juvenile dinosaurs on community structure and diversity. Science 371, 941–944 (2021).

  • 110.

    Currie, P. J., Badamgarav, D., Koppelhus, E. B., Sissons, R. & Vickaryous, M. K. Hands, feet, and behaviour in Pinacosaurus (Dinosauria: Ankylosauridae). Acta Palaeontol. Polon. 56, 489–504 (2011).

    Article 

    Google Scholar 

  • 111.

    Burns, M. E., Currie, P. J., Sissons, R. L. & Arbour, V. M. Juvenile specimens of Pinacosaurus grangeri Gilmore, 1933 (Ornithischia: Ankylosauria) from the Late Cretaceous of China, with comments on the specific taxonomy of Pinacosaurus. Cretac. Res. 32, 174–186 (2011).

    Article 

    Google Scholar 

  • 112.

    Burns, M. E., Tumanova, T. A. & Currie, P. J. Postcrania of juvenile Pinacosaurus grangeri (Ornithischia: Ankylosauria) from the Upper Cretaceous Alagteeg Formation, Alag Teeg, Mongolia: Implications for ontogenetic allometry in ankylosaurs. J. Paleontol. 89, 168–182 (2015).

  • 113.

    Botfalvai, G., Prondvai, E. & Ősi, A. Living alone or moving in herds? A holistic approach highlights complexity in the social lifestyle of Cretaceous ankylosaurs. Cretac. Res. 118, 104633 (2021).

    Article 

    Google Scholar 

  • 114.

    Arbour, V. M. & Zanno, L. E. The evolution of tail weaponization in amniotes. Proc. R. Soc. B Biol. Sci. 285, 20172299 (2018).

    Article 

    Google Scholar 

  • 115.

    Arbour, V. M. & Zanno, L. E. Tail weaponry in ankylosaurs and glyptodonts: An example of a rare but strongly convergent phenotype. Anat. Rec. 303, 988–998 (2020).

    Article 

    Google Scholar 

  • 116.

    Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).

  • 117.

    Hagen, O., Andermann, T., Quental, T. B., Antonelli, A. & Silvestro, D. Estimating age-dependent extinction: Contrasting evidence from fossils and phylogenies. Syst. Biol. 67, 458–474 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 118.

    Finnegan, S., Payne, J. L. & Wang, S. C. The Red Queen revisited: Reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34, 318–341 (2008).

    Article 

    Google Scholar 

  • 119.

    Doran, N. A., Arnold, A. J., Parker, W. C. & Huffer, F. W. Is extinction age dependent? PALAIOS 21, 571–579 (2006).

    ADS 
    Article 

    Google Scholar 

  • 120.

    Larson, D. W., Brown, C. M. & Evans, D. C. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Curr. Biol. 26, 1325–1333 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 121.

    Romano, M. Disparity versus diversity in ankylosaurid dinosaurs: Explored morphospace indicates two separate evolutive radiations. Rend. Online Soc. Geol. It. 53, 2–8 (2021).

  • 122.

    Turner, A. H., Montanari, S. & Norell, M. A. A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia. Am. Mus. Novitat. 2020, 1–48 (2021).

  • 123.

    Maryańska, T. & Osmólska, H. Pachycephalosauria, a new suborder of ornithischian dinosaurs. Palaeontol. Polon. 30, 45–102 (1974).

    Google Scholar 

  • 124.

    Sereno, P. C. National Geographic Research: Phylogeny of the bird-hipped dinosaurs (Order Ornithischia). Natl Geogr. Res. 2, 234–256 (1986). https://d3qi0qp55mx5f5.cloudfront.net/paulsereno/i/docs/86-NGRes-PhyloOrnithis_1.pdf?mtime=1591821557.

  • 125.

    Sullivan, R. M. A taxonomic review of the Pachycephalosauridae (Dinosauria: Ornithischia). N. Mex. Mus. Nat. Hist. Sci. Bull. 35, 347–365 (2006).

    Google Scholar 

  • 126.

    Lee, M. S. Y., Cau, A., Naish, D. & Dyke, G. J. Morphological clocks in paleontology, and a mid-cretaceous origin of crown aves. Syst. Biol. 63, 442–449 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 127.

    Arbour, V. M. & Evans, D. C. A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation. R. Soc. Open Sci. 4, 161086 (2017).

  • 128.

    McDonald, A. T., Wolfe, D. G. & Dooley, A. C. Jr A new tyrannosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Menefee Formation of New Mexico. PeerJ 6, e5749 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 129.

    Longrich, N. R. & Field, D. J. Torosaurus is not Triceratops: Ontogeny in chasmosaurine ceratopsids as a case study in dinosaur taxonomy. PLoS ONE 7, e32623 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 130.

    Larson, P. L. in Tyrannosaurid Paleobiology (eds. Parrish, J. M., Molnar, R. A., Currie, P. J. & Koppelhus, E. B.) 15–54 (Indiana University Press, 2013).

  • 131.

    Yun, C. Evidence points out that ‘Nanotyrannus’ is a juvenile Tyrannosaurus rex. PeerJ 3, e1052 (2015).

    Article 

    Google Scholar 

  • 132.

    Brusatte, S. L. et al. Dentary groove morphology does not distinguish ‘Nanotyrannus’ as a valid taxon of tyrannosauroid dinosaur. Comment on: “Distribution of the dentary groove of theropod dinosaurs: Implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988. Cretac. Res. 65, 232–237 (2016).

    Article 

    Google Scholar 

  • 133.

    Schmerge, J. D. & Rothschild, B. M. When a groove is not a groove: Clarification of the appearance of the dentary groove in tyrannosauroid theropods and the distinction between Nanotyrannus and Tyrannosaurus. Reply to Comment on: “Distribution of the dentary groove of theropod dinosaurs: Implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988. Cretac. Res. 65, 238–243 (2016).

    Article 

    Google Scholar 

  • 134.

    Xu, X., Zhou, Z., Sullivan, C., Wang, Y. & Ren, D. An updated review of the Middle-Late Jurassic Yanliao biota: Chronology, taphonomy, paleontology and paleoecology. Acta Geol. Sin. 90, 2229–2243 (2016).

    Article 

    Google Scholar 

  • 135.

    Cau, A., Brougham, T. & Naish, D. The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird? PeerJ 3, e1032 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 136.

    Agnolin, F. L. & Motta, M. J. Paravian phylogeny and the dinosaur-bird transition: An overview. Front. Earth Sci. 6, 252 (2019).

    ADS 
    Article 

    Google Scholar 

  • 137.

    Pei, R. et al. Potential for powered flight neared by most close avialan relatives, but few crossed Its thresholds. Curr. Biol. 30, 4033–4046 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 138.

    Foth, C. & Rauhut, O. W. M. Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs. BMC Evol. Biol. 17, 236 (2017).

  • 139.

    Rauhut, O. W., Tischlinger, H. & Foth, C. A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 8, e43789 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 140.

    Lefèvre, U. et al. A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers. Sci. Nat. 104, 74 (2017).

    Article 
    CAS 

    Google Scholar 

  • 141.

    Shen, C. et al. A new troodontid dinosaur from the Lower Cretaceous Yixian formation of Liaoning province. China Acta Geol. Sin. 91, 763–780 (2017).

    Article 

    Google Scholar 

  • 142.

    Arbour, V. M. & Currie, P. J. Euoplocephalus tutus and the diversity of ankylosaurid dinosaurs in the Late Cretaceous of Alberta, Canada, and Montana, USA. PLoS ONE 8, e62421 (2013).

  • 143.

    Arbour, V. M. & Currie, P. J. Systematics, phylogeny and palaeobiogeography of the ankylosaurid dinosaurs. J. Syst. Palaeontol. 14, 385–444 (2016).

    Article 

    Google Scholar 

  • 144.

    Arbour, V. M., Currie, P. J. & Badamgarav, D. The ankylosaurid dinosaurs of the Upper Cretaceous Baruungoyot and Nemegt formations of Mongolia. Zool. J. Linn. Soc. 172, 631–652 (2014).

    Google Scholar 

  • 145.

    Arbour, V. M. et al. A new ankylosaurid dinosaur from the Upper Cretaceous (Kirtlandian) of New Mexico with implications for ankylosaurid diversity in the Upper Cretaceous of Western North America. PLoS ONE 9, e108804 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 146.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The Geologic Time Scale 2012 (Elsevier B.V., 2012).

  • 147.

    Brown, C. M. & Henderson, D. M. A new horned dinosaur reveals convergent evolution in cranial ornamentation in Ceratopsidae. Curr. Biol. 25, 1641–1648 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 148.

    Jerzykiewicz, T., Currie, P. J., Fanti, F. & Lefeld, J. Lithobiotopes of the Nemegt Gobi Basin. Can. J. Earth Sci. https://doi.org/10.1139/cjes-2020-0148 (2021).

  • 149.

    Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: A new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).

    Article 

    Google Scholar 

  • 150.

    Rambaut, A. R., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 151.

    Brusatte, S. L. et al. Tyrannosaur paleobiology: New research on ancient exemplar organisms. Science 329, 1481–1485 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 152.

    Ryan, M. J., Chinnery-Allgeier, B. J. & Eberth, D. A. New Perspectives on Horned Dinosaurs (Indiana University Press, 2010).

  • 153.

    Xu, X., Wang, K., Zhao, X. & Li, D. First ceratopsid dinosaur from China and its biogeographical implications. Chin. Sci. Bull. 55, 1631–1635 (2010).

    CAS 
    Article 

    Google Scholar 

  • 154.

    Hannisdal, B. & Peters, S. E. Phanerozoic Earth system evolution and marine biodiversity. Science 334, 1121–1124 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 155.

    Liow, L. H., Reitan, T. & Harnik, P. G. Ecological interactions on macroevolutionary time scales: Clams and brachiopods are more than ships that pass in the night. Ecol. Lett. 18, 1030–1039 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 156.

    Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575–R583 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 157.

    Mayhew, P. J., Bell, M. A., Benton, T. G. & McGowan, A. J. Biodiversity tracks temperature over time. Proc. Natl Acad. Sci. USA 109, 15141–15145 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 158.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rythms, and aberration in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 159.

    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 160.

    Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the late cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, 1–14 (2009).

    Article 

    Google Scholar 

  • 161.

    Barba-Montoya, J., Reis, M., Schneider, H., Donoghue, P. C. J. & Yang, Z. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. N. Phytol. 218, 819–834 (2018).

    Article 

    Google Scholar 

  • 162.

    Zhang, M., Dai, S., Du, B., Ji, L. & Hu, S. Mid-Cretaceous hothouse climate and the expansion of early angiosperms. Acta Geol. Sin. 92, 2004–2025 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma

    Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass