Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trend Ecol. Evol. 31, 440–452. https://doi.org/10.1016/j.tree.2016.02.016 (2016).
El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Secur. 20, 132–144. https://doi.org/10.1016/j.gfs.2019.01.007 (2019).
Schimel, J. Playing scales in the methane cycle: from microbial ecology to the globe. Proc. Natl. Acad. Sci. USA 101, 12400–12401. https://doi.org/10.1073/pnas.0405075101 (2004).
Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541. https://doi.org/10.1038/ncomms10541 (2016).
Xue, P. P., Carrillo, Y., Pino, V., Minasny, B. & McBratney, A. B. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci. Rep. 8, 11725. https://doi.org/10.1038/s41598-018-30005-8 (2018).
Araujo, A. S. F. et al. Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. Appl. Soil Ecol. 143, 26–34. https://doi.org/10.1016/j.apsoil.2019.05.019 (2019).
Mendes, L. W. et al. Using metagenomics to connect microbial community biodiversity and functions. Curr. Issues Mol. Biol. 24, 103–118. https://doi.org/10.21775/cimb.024.103 (2017).
Miranda, A. R. L. et al. Responses of soil bacterial community after seventh yearly applications of composted tannery sludge. Geoderma 318, 1–8. https://doi.org/10.1016/j.geoderma.2017.12.026 (2018).
Pajares, S., Campo, J., Bohannan, B. J. M. & Etchevers, J. D. Environmental controls on soil microbial communities in a seasonally dry tropical forest. Appl. Environ. Microbiol. 84, e00342-e418. https://doi.org/10.1128/AEM.00342-18 (2018).
Dequiedt, S. et al. Biogeographical patterns of soil bacterial communities. Environ. Microbiol. Rep. 1, 251–255. https://doi.org/10.1111/j.1758-2229.2009.00040.x (2009).
Barnett, S. E., Youngblut, N. D. & Buckley, D. H. Soil characteristics and land-use drive bacterial community assembly patterns. FEMS Microbiol. Ecol. 96, fiz194. https://doi.org/10.1093/femsec/fiz194 (2020).
Araújo Filho, J. C. et al. Levantamento de reconhecimento de baixa e média intensidade dos solos do Estado de Pernambuco. Boletim de Pesquisa N 11 (2000).
Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 22, 711–728 (2013).
Lopes, M. B. S., Tavares, T. C. D. O., Veloso, D. A., Silva, N. C. & Fidelis, R. R. Cowpea bean production under water stress using hydrogels. Pesq. Agropec. Trop. 47, 87–92. https://doi.org/10.1590/1983-40632016v4743398 (2017).
Bezerra, A. A. C. et al. Morfologia e produção de grãos em linhagens modernas de feijão-caupi submetidas a diferentes densidades populacionais Morphology and grain yield in modern lines of cowpea under different planting densities. Biologia (Bratisl) 8, 85–93 (2008).
Cardoso, E. J. B. N. et al. Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?. Sci. Agric. 70, 274–289 (2013).
Pereira, A. P. A. et al. Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped Eucalyptus plantations. Front. Microbiol. 9, 1–13 (2018).
Bockheim, J. G. & Hartemink, A. E. Alfisols BT. The Soils of Wisconsin. in (eds. Bockheim, J. G. & Hartemink, A. E.) 129–147 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-52144-2_8
Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630. https://doi.org/10.1038/ncomms13630 (2016).
Zheng, Q. et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 136, 107521. https://doi.org/10.1016/j.soilbio.2019.107521 (2019).
Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M. & Raaijmakers, J. M. The wild side of plant microbiomes. Microbiome 6, 143. https://doi.org/10.1186/s40168-018-0519-z (2018).
Hartman, K., van der Heijden, M. G. A., Roussely-Provent, V., Walser, J. C. & Schlaeppi, K. Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5, 2. https://doi.org/10.1186/s40168-016-0220-z (2017).
Kolton, M. et al. Draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. Cv. Maccabi). J. Bacteriol. 194, 5462–5463. https://doi.org/10.1128/JB.01249-12 (2012).
Schaefer, C. E. G. R., Fabris, J. D. & Ker, J. C. Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Miner. 43, 137–154. https://doi.org/10.1180/claymin.2008.043.1.11 (2008).
Mendes, L. W., de Lima Brossi, M. J., Kuramae, E. E. & Tsai, S. M. Land-use system shapes soil bacterial communities in Southeastern Amazon region. Appl. Soil Ecol. 95, 151–160. https://doi.org/10.1016/j.apsoil.2015.06.005 (2015).
Gyaneshwar, P., Naresh Kumar, G., Parekh, L. J. & Poole, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93 (2002).
Germano, M. G. et al. Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia. Pesq. Agropec. Bras. 47, 654–664. https://doi.org/10.1590/S0100-204X2012000500004 (2012).
Mohammadipanah, F. & Wink, J. Actinobacteria from arid and desert habitats: diversity and biological activity. Front. Microbiol. 6, 1541. https://doi.org/10.3389/fmicb.2015.01541 (2016).
Andreote, F. D. & Pereira e Silva, M. D. C. Microbial communities associated with plants: learning from nature to apply it in agriculture. Curr. Opin. Microbiol. 37, 29–34 (2017).
Rocha, S. M. B. et al. Nodule microbiome from cowpea and lima bean grown in composted tannery sludge-treated soil. Appl. Soil Ecol. 151, 103542 (2020).
Soltani, A.-A. et al. Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J. Agric. Sci. 2, 106–115. https://doi.org/10.5539/jas.v2n4p106 (2010).
Liew, K. J. et al. Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities. 3 Biotech 8, 376. https://doi.org/10.1007/s13205-018-1391-z (2018).
Navarrete, A. A. et al. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Anto. van Leeuwe. 108, 741–752. https://doi.org/10.1007/s10482-015-0530-3 (2015).
Buckley, D. H. & Schmidt, T. M. Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiol. Ecol. 35, 105–112. https://doi.org/10.1016/S0168-6496(00)00122-7 (2001).
Kroeger, M. E. et al. New biological insights into how deforestation in amazonia affects soil microbial communities using metagenomics and metagenome-assembled genomes. Front. Microbiol. 9, 1635. https://doi.org/10.3389/fmicb.2018.01635 (2018).
Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, 1–13 (2018).
Székely, A. J. & Langenheder, S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol. Ecol. 87, 102–112 (2014).
López-Mondéjar, R. et al. Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 12, 1768–1778 (2018).
Pasternak, Z. et al. Spatial and temporal biogeography of soil microbial communities in Arid and Semiarid regions. PLoS ONE 8, e69705. https://doi.org/10.1371/journal.pone.0069705 (2013).
Pandit, S. N., Kolasa, J. & Cottenie, K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262. https://doi.org/10.1890/08-0851.1 (2009).
Yang, W. et al. Response of fungal communities and co-occurrence network patterns to compost amendment in black soil of northeast China. Front. Microbiol. 10, 1–11 (2019).
van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378. https://doi.org/10.1371/journal.pbio.1002378 (2016).
Saboya, R. D. C. C. et al. Resposta do feijão-caupi a estirpes fixadoras de nitrogênio em Gurupi-TO. J. Biotechnol. Biodivers. 4, 40–48. https://doi.org/10.20873/jbb.uft.cemaf.v4n1.saboya (2013).
IBGE. Levantamento Sistemático da Produção Agrícola Estatística da Produção Agrícola. (2019).
Tedesco, M., Gianello, C. & Bissani, C. Análises de solo, plantas e outros materiais (UFRGS, Porto Alegre, 1995).
Yeomans, J. C. & Bremner, J. M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 19, 1467–1476. https://doi.org/10.1080/00103628809368027 (1988).
Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).
Illumina. MiSeq System. Denature and Dilute Libraries Guide. Document 15039740 (2019).
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620. https://doi.org/10.1093/bioinformatics/btt593 (2014).
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods https://doi.org/10.1038/nmeth.3869 (2016).
Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).
Leps, J. & Smilauer, P. Multivariate Analysis of Ecological Data usingCANOCO This. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki https://doi.org/10.1017/CBO9780511615146 (2003).
Anderson, M. J. A new method for non parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).
Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).
R Core Team. R Development Core Team. R: A Language and Environment for Statistical Computing 55, 275–286 (2016).
Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343. https://doi.org/10.1890/10-1345.1 (2011).
Pedrinho, A., Mendes, L. W., Merloti, L. F., Andreote, F. D. & Tsai, S. M. The natural recovery of soil microbial community and nitrogen functions after pasture abandonment in the Amazon region. FEMS Microbiol. Ecol. 96, fiaa149. https://doi.org/10.1093/femsec/fiaa149 (2020).
Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, 1–11 (2012).
Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open source software for exploring and manipulating networks. BT – International AAAI Conference on Weblogs and Social. 361–362 (2009).
Source: Ecology - nature.com