in

Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia

  • 1.

    Bonizzoni, M. et al. On the origins of medfly invasion and expansion in Australia. Mol. Ecol. 13, 3845–3855 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Tuda, M., Kagoshima, K., Toquenaga, Y. & Arnqvist, G. Global genetic differentiation in a cosmopolitan pest of stored beans: Effects of geography, host-plant usage and anthropogenic factors. PLoS ONE 9, e106268 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Karsten, M., van Vuuren, B. J., Addison, P. & Terblanche, J. S. Deconstructing intercontinental invasion pathway hypotheses of the Mediterranean fruit fly (Ceratitis capitata) using a Bayesian inference approach: Are port interceptions and quarantine protocols successfully preventing new invasions?. Divers. Distrib. 21, 813–825 (2015).

    Article 

    Google Scholar 

  • 4.

    Rodriguero, M. S. et al. Out of the forest: past and present range expansion of a parthenogenetic weevil pest, or how to colonize the world successfully. Ecol. Evol. 6, 5431–5445 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Kébé, K. et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host Vigna unguiculata. J. Biogeogr. 44, 2515–2526 (2017).

    Article 

    Google Scholar 

  • 6.

    Lombaert, E. et al. Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data. Biol. Invasions 20, 665–677 (2018).

    Article 

    Google Scholar 

  • 7.

    Tuda, M., Ronn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Wei, S. J. et al. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol. Ecol. 24, 4094–4111 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Takano, S. et al. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. Proc. Natl. Acad. Sci. USA 114, 6110–6115 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Radcliffe, E. B. & Flanders, K. L. Biological control of alfalfa weevil in North America. Integr. Pest Manag. Rev. 3, 225–242 (1998).

    Article 

    Google Scholar 

  • 11.

    Kuwata, R., Tokuda, M., Yamaguchi, D. & Yukawa, J. Coexistence of two mitochondrial DNA haplotypes in Japanese populations of Hypera postica (Col., Curculionidae). J. Appl. Entomol. 129, 191–197 (2005).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Skuhrovec, J. Host plants of weevils of the genus Hypera (Coleoptera: Curculionidae) occurring in the Czech Republic. Klapalekiana 41, 215–255 (2005).

    Google Scholar 

  • 13.

    Wood, K. A., Armbrust, E. J., Bartell, D. P. & Irwin, B. J. The literature of arthropods associated with alfalfa. V. A bibliography of the alfalfa weevil, Hypera postica (Gyllenhal), and the Egyptian alfalfa weevil, Hypera brunneipennis (Boheman) (Coleoptera: Curculionidae). Illinois Agricultural Experimental Station, Special Publication, 54 (1978).

  • 14.

    Kimura, H., Okumura, M. & Yoshida, T. Emergence of and recent damage by the alfalfa weevil. Shokubutsu Boeki (Plant Protection) 42, 498–501 (in Japanese) (1988).

  • 15.

    CAB International crop protection compendium. CAB International. http://www.cabicompendium.org/cpc/home.asp (2013).

  • 16.

    Titus, E. G. On the life history of the alfalfa leaf-weevil. J. Econ. Entomol. 3, 459–470 (1910).

    Article 

    Google Scholar 

  • 17.

    Wehrle, L. P. The discovery of an alfalfa weevil (Hypera brunneipennis Boheman) in Arizona. J. Econ. Entomol. 33, 119–121 (1940).

    Article 

    Google Scholar 

  • 18.

    Poos, F. W. & Bissell, T. L. The alfalfa weevil in Maryland. J. Econ. Entomol. 46, 178–179 (1953).

    Article 

    Google Scholar 

  • 19.

    Volker, K. C. & Simpson, R. G. Behavior of alfalfa weevil larvae affecting the establishment of Tetrastichus incertus in Colorado. Environ. Entomol. 4, 742–744 (1975).

    Article 

    Google Scholar 

  • 20.

    Salt, G. & van den Bosch, R. The defense reactions of three species of Hypera (Coleoptera, Curculionidae) to an Ichneumon wasp. J. Invertebr. Pathol. 9, 164–177 (1967).

    Article 

    Google Scholar 

  • 21.

    Maund, C. M. & Hsiao, T. H. Differential encapsulation of two Bathyplectes parasitoids among alfalfa weevil strains, Hypera postica (Gyllenhal). Can. Entomol. 123, 197–203 (1991).

    Article 

    Google Scholar 

  • 22.

    Hsiao, T. H. Studies of interactions between alfalfa weevil strains, Wolbachia endosymbionts and parasitoids. In The ecology of agricultural pests: biochemical approaches (eds, Symondson, W. O. C. & Liddell, J. E.). 57–71 (Chapman & Hall, 1996).

  • 23.

    Hsiao, T. H. & Stutz, J. M. Discrimination of alfalfa weevil strains by allozyme analysis. Entomol. Exp. Appl. 37, 113–121 (1985).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Erney, S. J., Pruess, K. P., Danielson, S. D. & Powers, T. O. Molecular differentiation of alfalfa weevil strains (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 89, 804–811 (1996).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Böttger, J. A. A. Phylogenetic analysis of the alfalfa weevil complex (Coleoptera: Curculionidae) in North America. J. Econ. Entomol. 106, 426–436 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Iwase, S., Nakahira, K., Tuda, M., Kagoshima, K. & Takagi, M. Host-plant dependent population genetics of the invading weevil Hypera postica. Bull. Entomol. Res. 105, 92–100 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    White, C. E., Armbrust, E. J. & Ashley, J. Cross-mating studies of eastern and western strains of alfalfa weevil. J. Econ. Entomol. 65, 85–89 (1972).

    Article 

    Google Scholar 

  • 28.

    Iwase, S. & Tani, S. New haplotype and inter-strain reproductive compatibility of Wolbachia-uninfected alfalfa weevil, Hypera postica (Coleoptera: Curculionidae), in Japan. Entomol. Sci. 19, 72–76 (2016).

    Article 

    Google Scholar 

  • 29.

    Werren, J. H. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587–609 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Bailly-Bechet, M. et al. How long does Wolbachia remain on board?. Mol. Biol. Evol. 34, 1183–1193 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Hale, L. R. & Hoffmann, A. A. Mitochondrial DNA polymorphism and cytoplasmic incompatibility in natural populations of Drosophila simulans. Evolution 44, 1383–1386 (1990).

    PubMed 
    Article 

    Google Scholar 

  • 33.

    Ballard, J. W. O. & Kreitman, M. Unravelling selection in the mitochondrial genome of Drosophila. Genetics 138, 757–772 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Johnstone, R. A. & Hurst, G. D. D. Maternally inherited male-killing microorganisms may confound interpretation of mitochondrial DNA variability. Biol. J. Linn. Soc. 58, 453–470 (1996).

    Article 

    Google Scholar 

  • 35.

    Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Shoemaker, D. D., Dyer, K. A., Ahrens, M., McAbee, K. & Jaenike, J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168, 2049–2058 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Brownlie, J. C. et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 5, e1000368 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Rand, D. M., Haney, R. A. & Fry, A. J. Cytonuclear coevolution: the genomics of cooperation. TRENDS Ecol. Evol. 19, 645–653 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Arnqvist, G. et al. The genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution 64, 3354–3363 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Blickenstaff, C. C. Partial intersterility of eastern and western US strains of the alfalfa weevil. Ann. Entomol. Soc. Am. 58, 523–526 (1965).

    Article 

    Google Scholar 

  • 44.

    Hsiao, T. H. & Hsiao, C. Hybridization and cytoplasmic incompatibility among alfalfa weevil strains. Entomol. Exp. Appl. 37, 155–159 (1985).

    Article 

    Google Scholar 

  • 45.

    Laven, H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216, 383–384 (1967).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    Iwase, S. et al. Dynamics of infection with Wolbachia in Hypera postica (Coleoptera: Curculionidae) during invasion and establishment. Biol. Invasions 17, 3639–3648 (2015).

    Article 

    Google Scholar 

  • 47.

    Sanaei, E. et al. Global genetic diversity, lineage distribution and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol. Evol. 9, 9546–9563 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Ros, V. I. D., Fleming, V. M., Feil, E. J. & Breeuwer, J. A. J. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl. Environ. Microbiol. 75, 1036–1043 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Avise, J. C. Phylogeography: The history and formation of species (Harvard University Press, 2000).

    Google Scholar 

  • 50.

    Narita, S., Nomura, M., Kato, Y. & Fukatsu, T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol. Ecol. 15, 1095–1108 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Raychoudhury, R. et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318–326 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Jäckel, R., Mora, D. & Dobler, S. Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. Mol. Ecol. 22, 4241–4255 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Jiang, W. et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). Infect. Genet. Evol. 27, 202–211 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Jansen, V. A. A., Turelli, M. & Godfray, H. C. J. Stochastic spread of Wolbachia. Proc. R. Soc. Lond. B Biol. Sci. 275, 2769–2776 (2008).

    Google Scholar 

  • 55.

    Clancy, D. J. & Hoffmann, A. A. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol. Exp. Appl. 86, 13–24 (1998).

    Article 

    Google Scholar 

  • 56.

    Bordenstein, S. R. & Bordenstein, S. R. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS ONE 6, e29106 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Kamo, T. et al. Limited distribution of natural cyanamide in higher plants: Occurrence in Vicia villosa subsp varia, V. cracca, and Robinia pseudo-acacia. Phytochemistry 69, 1166–1172 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Megías, C., Cortes-Giraldo, I., Giron-Calle, J., Alaiz, M. & Vioque, J. Free amino acids, including canavanine, in the seeds from 32 Vicia species belonging to subgenus Vicilla. Biocatal. Agric. Biotechnol. 8, 126–129 (2016).

    Article 

    Google Scholar 

  • 59.

    Rosenthal, G. A. & Dahlman, D. L. Incorporation of L-canavanine into proteins and the expression of its antimetabolic effects. J. Agric. Food Chem. 39, 987–990 (1991).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Kamo, T., Tokuoka. Y. & Miyazaki, M. Quantification of canavanine, 2-aminoethanol, and cyanamide in Aphis craccivora and its host plants, Robinia pseudoacacia and Vicia angustifolia: Effects of these compounds on larval survivorship of Harmonia axyridis. J. Chem. Ecol. 38, 1552–1560 (2012).

  • 61.

    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).

    Article 

    Google Scholar 

  • 62.

    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Jordal, B. H. & Kambestad, M. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol. Ecol. Resour. 14, 7–17 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Quiros, C. F. & Bauchan, G. R. The genus Medicago and the origin of the Medicago sativa complex. In Alfalfa and alfalfa improvement (eds, Hanson, A. A., Barnes, D. K. & Hill, R. R.). 93–124 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1988).

  • 66.

    Small, E. Alfalfa and Relatives: Evolution and Classification of Medicago (NRC Research Press, 2011).

    Google Scholar 

  • 67.

    FAO Statistics Division. FAOSTAT: Crops and livestock products. http://www.fao.org/faostat/en/#data/TP (2017).

  • 68.

    Simon, C. A. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Kim, C. G. et al. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences. Mol. Biol. Evol. 17, 137–145 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Holden, P. R., Brookfield, J. F. Y. & Jones, P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol. Gen. Genet. 240, 213–220 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Kondo, N. I. et al. Wolbachia infections in world populations of bean beetles (Coleoptera: Chrysomelidae: Bruchinae) infesting cultivated and wild legumes. Zool. Sci. 28, 501–508 (2011).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Huelsenbeck, J. P. & Ronquist, F. MrBayes: Bayesian inference of phylogeny. Biometrics 17, 754–755 (2001).

    CAS 

    Google Scholar 

  • 74.

    Nylander, J. A. A. MrAIC.pl. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University (2004).

  • 75.

    Rambaut, A. & Drummond, A. J. Tracer v1.5, http://beast.bio.ed.ac.uk/ (2009).

  • 76.

    Tajima, F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Fu, Y.-X. & Li, W.-H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 79.

    Yang, Z. PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 81.

    Haran, J., Koutroumpa, F., Magnoux, E., Roques, A. & Roux, G. Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J. Zoolog. Syst. Evol. Res. 53, 109–115 (2015).

    Article 

    Google Scholar 

  • 82.

    Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating gene genealogies. Parallel Distrib. Proces. Symp. Int. Proc. 2, 184 (2002).

    Google Scholar 

  • 83.

    Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 85.

    Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 86.

    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Raymond, M. & Rousset, F. Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).

    Article 

    Google Scholar 

  • 88.

    Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273 (1979).

    ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • 89.

    Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 90.

    Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 92.

    Bielejec, F. et al. SpreaD3: Interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Innovations in water accessibility

    Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau