Overview
In earlier work34, epidemiological models are broadly divided into two large categories, called forecasting and mechanistic. The former models fit a specific curve to the data and then attempt to predict the dynamics of the quantity under consideration. The most well known mechanistic models are the SIR-type models. As noted by Holmadahl and Buckee34, the mechanistic models involve substantially more complicated mathematical machinary than the forecasting models, but they have the advantage that they can make predictions even when the relevant circumstances change. In our case, since our goal is to make predictions after the situation changes due to the lifting of the lockdown measures, we need to consider a mechanistic model. However, it is widely known that the main limitation of mechanistic models is the difficulty of determining the parameters specifying such models. In this direction, a methodological advance was presented by the authors35, filling an important gap in the relevant literature: it was shown in35 that from the knowledge of the most reliable data of the epidemic in a given country, namely the cumulative number of deaths, it is possible to determine suitable combinations of the constant parameters (of the original model) which specify the differential equation characterizing the death dynamics. Furthermore, a robust numerical algorithm was presented for obtaining these parameters. One of these constants, denoted by c, is particularly important for the analysis of the effect of easing the lockdown conditions, because it is proportional to the number of contacts between asymptomatic individuals that are infected by SARS-CoV-2 and susceptible ones. Specifically, as the equations presented below will indicate, this coefficient is measured in units of inverse population (where the population represents the number of individuals to which we assign no units) times inverse days. This constant reflects the probability of infection given a contact which is proportional to the viral load (i.e., the viral concentration in the respiratory-tract fluid) of expelled respiratory droplets36. Easing the lockdown will lead to an increase of the value of this constant. Thus, in order to quantify this effect we assumed that the post-lockdown situation could be described by the same model but with c multiplied by an integer number (zeta), such as (zeta =2), or 3, etc. Assuming a fixed viral load emission (i.e., no face mask or similar protective measures), this would be tantamount to doubling or tripling the number of contacts per day. To put things into perspective, it is relevant to mention here that in the relevant literature a ballpark estimate for daily contacts of an individual is about 13.437.
We first applied the above algorithm to the case of the COVID-19 epidemic in Greece. However, the novelty and the main interest of the present work consists of the extension and application of the above methodology to two subpopulations. This situation is significantly more complicated than that of2 and is described by 12 ODEs involving 18 parameters (details are discussed in the “Methods” section). Using this extended formulation, we analysed the effect of easing the lockdown measures under two distinct possible scenarios: in the first, we examined what would happen if the interactions between older persons, namely persons above 40 years of age, as well as between older and younger persons, namely those below 40, continue to be dictated by the same restrictions as those of the lockdown period. However, we assumed that the interaction among the young was progressively more free. In the second case, we analysed the effect of easing the lockdown measures in the entire population without distinguishing the older from the young. In principle, the effect on deaths in the above two scenarios could be analyzed by the extension of the rigorous results of35. However, due to the sparsity of the deaths data (especially for the younger population), this approach is practically not possible at present. Thus, we supplemented the data for deaths for the two subpopulations with data for the cumulative numbers of reported infected.
Using four sets of data, namely the number of deaths and the number of reported infected for the older and the younger population we found that the above two alternatives would result in very different outcomes: in the first case, the total number of deaths of the two sub-populations and the number of total infections would be relatively small. In the second case, these numbers would be prohibitively high. Specifically, in the case of Greece, if the lockdown was to be continued indefinitely, our analysis suggests that the total numbers of deaths and infections would finally be around 165 and 2550, respectively. These numbers would remain essentially the same even if the lockdown measures for the interaction between the young people were eased substantially, provided that the interactions of older-older and older-young would remain the same as during the lockdown period. For example, even if the parameter measuring the effect of the lockdown restrictions on the young-young interactions were increased fourfold, the number of deaths and infections would be (according to the model extrapolation) 184 and 3585, respectively. On the other hand, even if the parameters characterizing all three interactions were increased only threefold, the relevant numbers would be 48144 and 1283462. It is clear that the latter numbers are prohibitive, suggesting that a generic release of the lockdown may be catastrophic.
In our view, the explanations provided in the “Methods” section for the assumptions of our model, which show that these assumptions are typical in the standard epidemiological models, substantiate the qualitative conclusions (and notes of caution) regarding the impact of the above two different types of exit policies. This may provide a sense of how a partial restoration of regular life activities can be achieved without catastrophic consequences, while the race for pharmacological or vaccine-based interventions that will lead to an end of the current pandemic is still ongoing. Importantly, we also offer some caveats emphasizing the qualitative nature of our conclusions and possible factors that may substantially affect the actual outcome of the lifting of lockdown measures.
Model setup: single population versus two age groups
We divide the population in two subpopulations, the young (y) and the older (o). In order to explain the basic assumptions of our model we first consider a single population, and then discuss the needed modifications in our case which involves two subpopulations. Let E(t) denote the exposed (but not infectious) population. An individual in this population, after a median 4-day period (required for incubation — see e.g.38) will either become sick or will be asymptomatic; an interval of 3-10 days captures 98% of the cases. The sick (infected) and asymptomatic populations will be denoted, respectively, by I(t) and A(t). The rate at which an exposed person becomes asymptomatic is denoted by a; this means that each day aE(t) persons leave the exposed population and enter the asymptomatic population. Similarly, each day sE(t) leave the exposed population and enter the sick population. These processes, as well as the subsequent movements are depicted in the flowchart of Fig. 1.
Flowchart of the populations considered in the model and the rates of transformation between them. The corresponding dynamical equations are Eqs. (1)–(6).
The asymptomatic individuals recover with a rate (r_1), i.e., each day (r_1A(t)) leave the asymptomatic population and enter the recovered population, which is denoted by R(t). The sick individuals either recover with a rate (r_2) or they become hospitalized, H(t), with a rate h. In turn, the hospitalized patients also have two possible destinations; either they recover with a rate (r_3), or they become deceased, D(t), with a rate d.
It is straightforward to write the above statements in the language of mathematics; this gives rise to the equations (1)–(5) below:
$$begin{aligned} frac{dA}{dt}= a E – r_1 A end{aligned}$$
(1)
$$begin{aligned} frac{dI}{dt}= s E – (h + r_2) I end{aligned}$$
(2)
$$begin{aligned} frac{dH}{dt}= h I – (r_3+d) H end{aligned}$$
(3)
$$begin{aligned} frac{dR}{dt}= r_1 A + r_2 I + r_3 H end{aligned}$$
(4)
$$begin{aligned} frac{dD}{dt}= d H end{aligned}$$
(5)
$$begin{aligned} frac{dE}{dt}= c left[ T – (E+I+A+H+R+D)right] left( A + b Iright) – (a+s) E end{aligned}$$
(6)
It is noted that our model is inspired by various expanded versions of the classic SIR model adapted to the particularities of COVID-19 (such as the key role of the asymptomatically infected). It is, in particular, inspired by, yet not identical with that of14. In order to complete the system of equations (1)–(6), it is necessary to describe the mechanism via which a person can become infected. For this purpose we adopt the standard assumptions made in the typical epidemiological models, such as the SIR (susceptible, infected, recovered) model: let T denote the total population and let c characterize the number of contacts per day made by an individual with the capacity to infect (c is thought of as being normalized by T). Such a person belongs to I, A or H. However, for simplicity we assume that the hospitalized population cannot infect; this assumption is based on two considerations: first, the strict protective measures taken at the hospital, and second, the fact that hospitalized patients are infectious only for part of their stay in the hospital. The latter fact is a consequence of the relevant time scales of virus shedding in comparison to the time to hospitalization and the duration of hospital stay. The asymptomatic individuals are (more) free to interact with others, whereas the (self-isolating) sick persons are not. Thus, we use c to characterize the contacts of the asymptomatic persons and b to indicate the different infectiousness (due to reduced contacts/self-isolation) of the sick in comparison to the asymptomatic individuals.
The number of people available to be infected (i.e., the susceptible population) is (T-(E+I+A+H+R+D)). Indeed, the susceptible individuals consist of the total population minus all the individuals that are going or have gone through the course of some phase of infection, namely they either bear the infection at present ((E+A+I+H)) or have died from COVID-19 (D) or are assumed to have developed immunity to COVID-19 due to recovery (R). Hence, if we call the total initial individuals T, this susceptible population is given by the expression written earlier. The rate by which each day individuals enter E is given by the product of the above expression with (c(A+bI)). At the same time, as discussed earlier, every day ((a+s)E) persons leave the exposed population. It is relevant to note here that within this simpler model, it is possible to calculate the basic reproduction number (R_0), which is a quantity of substantial value in epidemiological studies32,33. In this model, this can be found to be33:
$$begin{aligned} R_0=frac{c T}{a+s}left[ frac{a}{r_1} + frac{b s}{r_2+h} right] . end{aligned}$$
(7)
This will be useful below for the purposes of finding the change in c (under lockdown) needed in order for transmission to cross the threshold of (R_0=1) and thus to lead to growth of the epidemic. In the particular case of the data shown in Table 1, (R_0=0.4084), in accordance with the lockdown situation associated with a controlled epidemic.
It is straightforward to modify the above model so that it can describe the dynamics of the older and younger subpopulations. Each subpopulation satisfies the same set of equations as those described above, except for the last equation which is modified as follows: the people available to be infected in each subpopulation are described by the expression given above where T, E, I, A, H, R, D have the superscripts (^o) or (^y), denoting older and young, respectively; (A+bI) is replaced in both cases by (A^o+A^y+b(I^o+I^y)) where for simplicity we have assumed that the infectiousness of the older and the young is the same. We have already considered the implications of the generalisation of the above model by allowing different parameters to describe the interaction of the older and young populations; this will be discussed in the “Methods” section. In what follows, we will discuss the results of this simpler “isotropic” interaction model.
Quantitative model findings
The parameters of the model are given in the flowchart of Fig. 1. Naturally, for the two-age model considered below, there is one set of such parameters associated with the younger population and one associated with the older one. The optimization routine used for the identification of these parameters is explained in detail in the “Methods” section. The parameters resulting from this optimization for the single population model are shown in Table 1, whereas for each of the two populations are given in Table 2. Clearly, many of these parameters are larger for the older population in comparison to the young, leading to a larger number of both infections and deaths in the older than in the young population.
Support for the validity of our model is presented in Fig. 2, which depicts its comparison (using the above optimized parameters) with the available data. The situation corresponding to keeping the lockdown conditions indefinitely, is the one illustrated in Fig. 2. In this case, the number of deaths and cumulative infections rapidly reaches a plateau, indicating the elimination of the infection. Here, we have optimized the model on the basis of data used from Greece39 between April 3rd and May 4th. It is noted that daily updates occurred at 3pm for the country of Greece, hence it is not clear up to what time the data are collected that are included in the daily report. We have assumed that the data reflect the infections and deaths present on that particular day. This possibly shifts the starting point of our count by a few hours, but should not change the overall result trends.
We next explain the implications of the model when different scenarios of ‘exit’ from the lockdown state are implemented. The relevant results are illustrated in Figs. 3, 4 and the essential conclusions are summarized in Table 3 for the numbers of deaths and cumulative infections, respectively. First, we need to explain the meaning of the parameter (zeta) appearing in the above tables: this parameter reflects the magnitude of the easing of the lockdown restrictions. Indeed, since the main effect of the lessening of these restrictions is that the number of contacts increases, we model the effect of easing the lockdown restrictions by multiplying the parameter c with a factor that we refer to as (zeta). The complete lockdown situation corresponds to (zeta)=1; the larger the value of (zeta), the lesser the restrictions imposed on the population. By employing the above quantitative measure of easing the lockdown restrictions, we consider in detail two distinct scenarios. In the first, which corresponds to the top rows of the Figures 3 and 4, we only allow the number of contacts of “young individuals with young individuals” (corresponding to the parameter (c^{yy}) mentioned in the “Methods” section) to be multiplied by the factor (zeta). This means that the lockdown measures are eased only with respect to the interaction of young individuals with other young individuals, while the interactions of the young individuals with the older ones, as well as the interactions among older individuals remain in the lockdown state. In the second scenario, corresponding to the bottom rows of the Figures 3 and 4, the restrictions of the lockdown are simultaneously eased in both the young and the older population; in this case all contacts are increased by the factor (zeta). It is noted that while we change c by this factor, we maintain the product cb at its previous value (i.e., we concurrently transform (crightarrow zeta c) and (brightarrow b/zeta)) considering that the sick still operate under self-isolation conditions and thus do not accordingly increase their number of contacts.
Evolution of the current situation of deaths D(t) (left) and cumulative infections C(t) (right) in Greece, under the case of an indefinite continuation of the lockdown conditions. In this and all the figures that follow, the blue curve corresponds to the young population, while the red curve to the older population. The data for Greece from the 3rd of April to the 4th of May 2020 are depicted by dots. For the latter, alternate colors have been used (i.e., blue dots for the older population and red for the younger for clearer visualization).
Fig. 3 corresponds to the case where the parameter (zeta) associated with the number of contacts between susceptible and asymptomatic individuals doubles. In this case, as also shown in Table 3, the situation does not worsen in a dramatic way. In particular, the number of deaths increases by 1, whereas the cumulative infections only increase by the small number of 58. In the second scenario where the number of contacts is doubled for both the young and the older populations, we find slightly larger (but not totally catastrophic) effects: the number of deceased individuals increases by 58 and the total number of infections grows by 1550.
Again the deaths D(t) and the cumulative infections C(t) are given for the case where the c factor (characterizing the number of contacts) amongst young individuals is doubled, but those of the older individuals (and of the young-older interaction) are kept fixed. This is shown in the top panels. In the bottom panels, the c’s of both young and old individuals are doubled.
The situation becomes far more dire when the number of contacts is multiplied by a factor of 3 for both the young and older populations, meaning that the lockdown restrictions are eased significantly for the entire population. As shown in Table 3 and in Fig. 4, if the c’s of the young population only are multiplied by a factor of 3, then the deaths are increased by 3 and the infections by 198 (black line in the Figure and 3rd row of the Tables). This pales by comparison to the dramatic scenario when the c’s associated with both the young and older sub-populations are multiplied by 3; in this case, the number of deaths jumps dramatically to 48144, while the number of infections is a staggering 1283462, growing by about 500 times.
Same as reported in Fig. 3 but now where the contacts are multiplied by factors 3, 4 and 5. Full (dashed) lines hold for the young (older) population.
An example corroborating the above qualitative trend can also be found in Fig. 4 and in the 4th and 5th rows of Table 3. Here, for e.g. (zeta =5), even the effect of releasing solely the young population leads to very substantial increases, namely to 6044 deaths and 306219 infections although of course it is nowhere near the scenarios of releasing both young and older populations. In the second scenario, the numbers are absolutely daunting: using the parameters of Table 2 we find that the number of deaths jumps to 83274 and the number of cumulative infections to 2221296.
Hospitalizations when only the young population (left) or both the young and older (right) population are released. Full (dashed) lines hold for the young (older) population.
Finally, we show the prediction of the easing measures in the hospitalizations (i.e. daily occupied beds in hospitals). This is a crucial point to assess in order that the health system does not collapse because of COVID-19 patients. Figure 5 shows these trends for the above mentioned values of (zeta). In the case of releasing solely the young population (see left panel of the Figure), it is observed that the number of hospitalizations decreases monotonically except for (zeta =5), where the hospitalization peak is 523 for the young population and 1426 for the older one (values that are affordable by Greek health system); however, if both the young and older population are released (see right panel of the Figure), there is a monotonically decreasing behaviour only for (zeta =1) and 2. For higher (zeta) we observe that the height of the peak obviously increases with (zeta), while this peak also occurs earlier when the number of contacts is increased; for instance, for (zeta =3), the hospitalization peak number of the young population is 3844 whereas this value is 37030 for the older one, numbers that are, unfortunately, unaffordable for the Greek health system. These figures grow even further to 16869 and 163648 if (zeta =5).
In light of the above results, the significance of preserving the lockdown restrictions of the sensitive groups of the older population is naturally emerging. It can be seen that in the case where the number of contacts is roughly doubled, the behavior of release of young or young and older individuals is not dramatic (although even in this case releasing only the young population is, of course, preferable). Nevertheless, a more substantial release of the young population is still not catastrophic. On the other hand, the higher rates of infection, hospitalization and proneness to death of senior individuals may bring about highly undesirable consequences, should both the young and older members of the population be allowed to significantly increase (by 3 times or more) their number of contacts.
Source: Ecology - nature.com