in

Effect of temperature on the unimodal size scaling of phytoplankton growth

  • 1.

    Finkel, Z. V. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32, 119–137 (2010).

    CAS  Article  Google Scholar 

  • 2.

    Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Ann. Rev. Mar. Sci. 7, 241–264 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Chavez, F. P., Messié, M. & Pennington, J. T. marine primary production in relation to climate variability and change. Ann. Rev. Mar. Sci. 3, 227–260 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Kleiber, M. Body size and metabolism. Hilgardia J. Agric. Sci. 6, 315–353 (1932).

    CAS  Article  Google Scholar 

  • 5.

    Gillooly, J. F. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 7.

    Raven, J. A. Why are there no picoplanktonic O2 evolvers with volumes less than 10–19 m3?. J. Plankton Res. 16, 565–580 (1994).

    Article  Google Scholar 

  • 8.

    Bec, B., Collos, Y., Vaquer, A., Mouillot, D. & Souchu, P. Growth rate peaks at intermediate cell size in marine photosynthetic picoeukaryotes. Limnol. Oceanogr. 53, 863–867 (2008).

    ADS  Article  Google Scholar 

  • 9.

    Chen, B. & Liu, H. Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55, 965–972 (2010).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Marañón, E. et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16, 371–379 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Ward, B. A., Marañón, E., Sauterey, B., Rault, J. & Claessen, D. The size dependence of phytoplankton growth rates: a trade-off between nutrient uptake and metabolism. Am. Nat. 189, 170–177 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Chen, B., Liu, H., Huang, B. & Wang, J. Temperature effects on the growth rate of marine picoplankton. Mar. Ecol. Prog. Ser. 505, 37–47 (2014).

    ADS  Article  Google Scholar 

  • 13.

    Sal, S., Alonso-Saez, L., Bueno, J., Garcıa, F. C. & Lopez-Urrutia, A. Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnol. Oceanogr. 60, 1212–1221 (2015).

    ADS  Article  Google Scholar 

  • 14.

    Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).

    ADS  Article  Google Scholar 

  • 15.

    Chen, B. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37, 285–292 (2015).

    Article  Google Scholar 

  • 16.

    Thomas, M. K., Kremer, C. T. & Litchman, E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Glob. Ecol. Biogeogr. 25, 75–86 (2016).

    Article  Google Scholar 

  • 17.

    Heinle, M. The effects of light, temperature and nutrients on coccolithophores and implications for biogeochemical models (Doctoral dissertation, University of East Anglia, Norwich, United Kingdom). (2013).

  • 18.

    Kruskopf, M. & Flynn, K. J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol. 169, 841–842 (2006).

    Article  CAS  Google Scholar 

  • 19.

    Flynn, K. J. & Raven, J. A. What is the limit for photoautotrophic plankton growth rates?. J. Plankton Res. 39, 13–22 (2016).

    Article  CAS  Google Scholar 

  • 20.

    Prakash, A., Skoglund, L., Rystad, B. & Jensen, A. Growth and cell-size distribution of marine planktonic algae in batch and dialysis cultures. J. Fish. Res. Board Canada 30, 143–155 (1973).

    Article  Google Scholar 

  • 21.

    Xia, L., Huang, R., Li, Y. & Song, S. The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231). PLoS ONE 12, e0186434 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 22.

    Verdy, A., Follows, M. & Flierl, G. Optimal phytoplankton cell size in an allometric model. Mar. Ecol. Prog. Ser. 379, 1–12 (2009).

    ADS  Article  Google Scholar 

  • 23.

    Kempes, C. P., Dutkiewicz, S. & Follows, M. J. Growth, metabolic partitioning, and the size of microorganisms. Proc. Natl. Acad. Sci. U.S.A. 109, 495–500 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Stawiarski, B., Buitenhuis, E. T. & Quéré, C. L. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).

    Article  Google Scholar 

  • 25.

    Martiny, A. C., Ma, L., Mouginot, C., Chandler, J. W. & Zinser, E. R. Interactions between thermal acclimation, growth rate, and phylogeny influence prochlorococcus elemental stoichiometry. PLoS ONE 11, 1–12 (2016).

    Article  CAS  Google Scholar 

  • 26.

    Mackey, K. R. M. et al. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol. 163, 815–829 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Demory, D. et al. Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean. ISME J. 13, 132–146 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Pittera, J. et al. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J. 8, 1221–1236 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Barton, S. & Yvon-Durocher, G. Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnol. Oceanogr. 64, 2081–2091 (2019).

    ADS  Article  Google Scholar 

  • 30.

    Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).

    ADS  Article  Google Scholar 

  • 31.

    Berthelot, H. et al. NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton. ISME J. 13, 651–662 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Duhamel, S., Kim, E., Sprung, B. & Anderson, O. R. Small pigmented eukaryotes play a major role in carbon cycling in the P-depleted western subtropical North Atlantic, which may be supported by mixotrophy. Limnol. Oceanogr. 64, 2424–2440 (2019).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Worden, A. Z., Nolan, J. K. & Palenik, B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol. Oceanogr. 49, 168–179 (2004).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Gutierrez-Rodríguez, A., Selph, K. E. & Landry, M. R. Phytoplankton growth and microzooplankton grazing dynamics across vertical environmental gradients determined by transplant in situ dilution experiments. J. Plankton Res. 38, 271–289 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Worden, A. Z. & Binder, B. J. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30, 159–174 (2003).

    Article  Google Scholar 

  • 36.

    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U.S. A. 107, 12941–12945 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    García, F. C. et al. The allometry of the smallest: superlinear scaling of microbial metabolic rates in the Atlantic Ocean. ISME J. 10, 1029–1036 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 38.

    Kiørboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Adv. Mar. Biol. 29, 1–72 (1993).

    Article  Google Scholar 

  • 39.

    Marãnón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, 20–23 (2014).

    Article  CAS  Google Scholar 

  • 40.

    Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem. Cycles 19, 1–14 (2005).

    Article  CAS  Google Scholar 

  • 41.

    Tsuda, A. et al. A mesoscale iron enrichment in the Western subarctic Pacific induces a large centric diatom bloom. Science 300, 958–961 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Latasa, M., Landry, M. R., Schlüter, L. & Bidigare, R. R. Pigment-specific growth and grazing rates of phytoplankton in the central equatorial pacific. Limnol. Oceanogr. 42, 289–298 (1997).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Cavender-Bares, K. K., Mann, E. L., Chisholm, S. W., Ondrusek, M. E. & Bidigare, R. R. Differential response of equatorial Pacific phytoplankton to iron fertilization. Limnol. Oceanogr. 44, 237–246 (1999).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Mouriño-Carballido, B. et al. Nutrient supply controls picoplankton community structure during three contrasting seasons in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 543, 1–19 (2016).

    ADS  Article  CAS  Google Scholar 

  • 45.

    Schmidt, K. et al. Increasing picocyanobacteria success in shelf waters contributes to long-term food web degradation. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15161 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Tarran, G. A., Heywood, J. L. & Zubkov, M. V. Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean. Deep Res. Part II Top. Stud. Oceanogr. 53, 1516–1529 (2006).

    ADS  Article  Google Scholar 

  • 47.

    Marañón, E., Cermeño, P., Latasa, M. & Tadonléké, R. D. Temperature, resources, and phytoplankton size structure in the ocean. Limnol. Oceanogr. 57, 1266–1278 (2012).

    ADS  Article  Google Scholar 

  • 48.

    Chisholm, S. W. Phytoplankton Size. Prim. Product. Biogeochem. Cycles Sea 02139, 213–237 (1992).

    Article  Google Scholar 

  • 49.

    Montes-Pérez, J. J. et al. Intermediate-size cell dominance in the phytoplankton community of an eutrophic, estuarine ecosystem (Guadalhorce River, Southern Spain). Hydrobiologia 847, 2241–2254 (2020).

    Article  CAS  Google Scholar 

  • 50.

    Chen, B. & Laws, E. A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs?. Limnol. Oceanogr. 62, 806–817 (2016).

    ADS  Article  Google Scholar 

  • 51.

    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  • 52.

    Johnson, F. & Lewin, I. The growth rate of E. coli in relation to temperature, Quinine and Coenzyme. J. Cell Physiol. 28, 47–75 (1946).

    CAS  Article  Google Scholar 

  • 53.

    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A. 108, 10591–10596 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92