in

Elevational and seasonal patterns of butterflies and hawkmoths in plant-pollinator networks in tropical rainforests of Mount Cameroon

  • 1.

    Classen, A. et al. Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecol. Evol. 10, 2182–2195 (2020).

    Google Scholar 

  • 2.

    Klecka, J., Hadrava, J., Biella, P. & Akter, A. Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network. PeerJ 2018, e6025 (2018).

    Google Scholar 

  • 3.

    Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).

    Google Scholar 

  • 4.

    Martínez-Adriano, C. A., Díaz-Castelazo, C. & Aguirre-Jaimes, A. Flower-mediated plant-butterfly interactions in an heterogeneous tropical coastal ecosystem. PeerJ 2018, e5493 (2018).

    Google Scholar 

  • 5.

    Mertens, J. E. J. et al. Changes of pollinating community of Scadoxus cinnabarinus (Amaryllidaceae) along its elevational range on Mount Cameroon. Arthropod. Plant. Interact. 14, 215–226 (2020).

    Google Scholar 

  • 6.

    Wardhaugh, C. W. How many species of arthropods visit flowers?. Arthropod. Plant. Interact. 9, 547–565 (2015).

    Google Scholar 

  • 7.

    Hahn, M. & Brühl, C. A. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod. Plant. Interact. 10, 21–28 (2016).

    Google Scholar 

  • 8.

    Willmer, P. Pollination and Floral Ecology (Princeton University Press, 2011).

    Google Scholar 

  • 9.

    Johnson, S. D. et al. The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct. Ecol. 31, 101–115 (2017).

    Google Scholar 

  • 10.

    Darwin, C. On the Various Contrivances by Which British and Foreign Orchids are Fertilized (Murray, 1862).

    Google Scholar 

  • 11.

    Fox, K. et al. Nectar Robbery and Thievery in the hawk moth (Lepidoptera: Sphingidae)-Pollinated Western Prairie Fringed Orchid Platanthera praeclara. Ann. Entomol. Soc. Am. 108, 1000–1013 (2015).

    Google Scholar 

  • 12.

    Martins, D. J. & Johnson, S. D. Interactions between hawkmoths and flowering plants in East Africa: polyphagy and evolutionary specialization in an ecological context. Biol. J. Linn. Soc. 110, 199–213 (2013).

    Google Scholar 

  • 13.

    Arroyo, M. T. K., Till-Bottraud, I., Torres, C., Henríquez, C. A. & Martínez, J. Display size preferences and foraging habits of high andean butterflies pollinating Chaetanthera lycopodioides (Asteraceae) in the subnival of the central Chilean Andes. Arctic Antarct. Alp. Res. 39, 347–352 (2007).

    Google Scholar 

  • 14.

    Santos, R. S., Milfont, M. O., Silva, M. M., Carneiro, L. T. & Castro, C. C. Butterflies provide pollination services to macadamia in northeastern Brazil. Sci. Hortic. (Amst.) 259, 108818 (2020).

    Google Scholar 

  • 15.

    Fleming, T. H. & Holland, J. N. The evolution of obligate pollination mutualisms: Senita cactus and senita moth. Oecologia 114, 368–375 (1998).

    Google Scholar 

  • 16.

    Skogen, K. A., Overson, R. P., Hilpman, E. T. & Fant, J. B. Hawkmoth pollination facilitates long-distance pollen dispersal and reduces isolation across a gradient of land-use change. Ann. Mo. Bot. Gard. 104, 495–511 (2019).

    Google Scholar 

  • 17.

    Corbet, S. A. Butterfly nectaring flowers: butterfly morphology and flower form. Entomol. Exp. Appl. 96, 289–298 (2000).

    Google Scholar 

  • 18.

    Tiple, A. D., Khurad, A. M. & Dennis, R. L. H. Adult butterfly feeding-nectar flower associations: constraints of taxonomic affiliation, butterfly, and nectar flower morphology. J. Nat. Hist. 43, 855–884 (2009).

    Google Scholar 

  • 19.

    Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon Press, 1979).

    Google Scholar 

  • 20.

    Mitchell, T. C., Dötterl, S. & Schaefer, H. Hawk-moth pollination and elaborate petals in Cucurbitaceae: the case of the Caribbean endemic Linnaeosicyos amara. Flora Morphol. Distrib. Funct. Ecol. Plants 216, 50–56 (2015).

    Google Scholar 

  • 21.

    Glover, B. J. Pollinator attraction: the importance of looking good and smelling nice. Curr. Biol. 21, R307–R309 (2011).

    Google Scholar 

  • 22.

    Kelber, A., Balkenius, A. & Warrant, E. J. Colour vision in diurnal and nocturnal hawkmoths. Integr. Comp. Biol. 43, 571–579 (2003).

    Google Scholar 

  • 23.

    Ômura, H. & Honda, K. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia 142, 588–596 (2005).

    Google Scholar 

  • 24.

    Pohl, N. B., Van Wyk, J. & Campbell, D. R. Butterflies show flower colour preferences but not constancy in foraging at four plant species. Ecol. Entomol. 36, 290–300 (2011).

    Google Scholar 

  • 25.

    Yurtsever, S., Okyar, Z. & Guler, N. What colour of flowers do Lepidoptera prefer for foraging?. Biologia (Bratisl). 65, 1049–1056 (2010).

    Google Scholar 

  • 26.

    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).

    Google Scholar 

  • 27.

    Klomberg, Y. et al. Spatiotemporal shifts in the role of floral traits in shaping tropical plant-pollinator interactions. bioRxiv 2020.10.16.342386. https://doi.org/10.1101/2020.10.16.342386 (2020).

  • 28.

    Ollerton, J., Johnson, S. D. & Hingston, A. B. Geographical variation in diversity and specificity of pollination systems. In Plant–Pollinator Interactions: From Specialization to Generalization (eds Waser, N. M. & Ollerton, J.) 283–308 (University of Chicago Press, 2006).

    Google Scholar 

  • 29.

    Maicher, V. et al. Flying between raindrops: strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon. Ecol. Evol. 8, 12761–12772 (2018).

    Google Scholar 

  • 30.

    Maicher, V. et al. Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 47, 342–354 (2020).

    Google Scholar 

  • 31.

    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton University Press, 1972).

    Google Scholar 

  • 32.

    McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (ed. John Wiley & Sons, Ltd), a0022548 (Wiley, Chichester, 2010) https://doi.org/10.1002/9780470015902.a0022548.

  • 33.

    Šmilauer, P. & Lepš, J. Multivariate analysis of ecological data using Canoco 5 (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139627061.

    Google Scholar 

  • 34.

    Kato, M. et al. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia. Am. J. Bot. 95, 1375–1394 (2008).

    Google Scholar 

  • 35.

    Momose, K. et al. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Am. J. Bot. 85, 1477–1501 (1998).

    Google Scholar 

  • 36.

    Ramirez, N. Biologia de Polinizacion en una Comunidad Arbustiva Tropical de la Alta Guayana Venezolana. Biotropica 21, 319 (1989).

    Google Scholar 

  • 37.

    Van Dulmen, A. Pollination and phenology of flowers in the canopy of two contrasting rain forest types in Amazonia, Colombia. Plant Ecology. 153, 73–85 (2001).

    Google Scholar 

  • 38.

    Nsor, C. A. & Chapman, H. M. A preliminary investigation into the avian pollinators of three tree species in a Nigerian montane forest. Malimbus 35, 38–49 (2013).

    Google Scholar 

  • 39.

    Weber, N., Kalko, E. K. V. & Fahr, J. A first assessment of home range and foraging behaviour of the African long-tongued bat Megaloglossus woermanni (Chiroptera: Pteropodidae) in a heterogeneous landscape within the Lama Forest Reserve, Benin. Acta Chiropterol. 11, 317–329 (2009).

    Google Scholar 

  • 40.

    Borges, R. M., Gowda, V. & Zacharias, M. Butterfly pollination and high-contrast visual signals in a low-density distylous plant. Oecologia 136, 571–573 (2003).

    Google Scholar 

  • 41.

    Mizusawa, L., Takimoto, G., Yamasaki, M., Isagi, Y. & Hasegawa, M. Comparison of pollination characteristics between the insular shrub Clerodendrum izuinsulare and its widespread congener C.trichotomum. Plant Species Biol. 29, 73–84 (2014).

    Google Scholar 

  • 42.

    Budumajji, U. & Solomon Raju, A. J. Pollination ecology of Bidens pilosa L. (Asteraceae). Taiwania 63, 89–100 (2018).

    Google Scholar 

  • 43.

    Valentin-Silva, A., Godinho, M. A. S., Cruz, K. C., Lelis, S. M. & Vieira, M. F. Three psychophilous Asteraceae species with distinct reproductive mechanisms in southeastern Brazil. New Zeal. J. Bot. 54, 498–510 (2016).

    Google Scholar 

  • 44.

    Valtonen, A. et al. Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere 4, art36 (2013).

    Google Scholar 

  • 45.

    Aizen, M. A. Down-facing flowers, hummingbirds and rain. Taxon 52, 675–680 (2003).

    Google Scholar 

  • 46.

    Janeček, Š, Bartoš, M. & Njabo, K. Y. Convergent evolution of sunbird pollination systems of Impatiens species in tropical Africa and hummingbird systems of the New World. Biol. J. Linn. Soc. 115, 127–133 (2015).

    Google Scholar 

  • 47.

    Bartoš, M. & Janeček, Š. Pollinator-induced twisting of flowers sidesteps floral architecture constraints. Curr. Biol. 24, R793–R795 (2014).

    Google Scholar 

  • 48.

    Bärtschi, F. et al. Elevational richness patterns of sphingid moths support area effects over climatic drivers in a near-global analysis. Glob. Ecol. Biogeogr. 28, 917–927 (2019).

    Google Scholar 

  • 49.

    Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).

    Google Scholar 

  • 50.

    Hořák, D. et al. Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa. J. Biogeogr. 46, 2466–2478 (2019).

    Google Scholar 

  • 51.

    Ramos-Jiliberto, R. et al. Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).

    Google Scholar 

  • 52.

    Bloch, D. & Erhardt, A. Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology 89, 2453–2460 (2008).

    Google Scholar 

  • 53.

    Brehm, G., Zeuss, D. & Colwell, R. K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography (Cop.) 42, 632–642 (2019).

    Google Scholar 

  • 54.

    Kaczorowski, R. L., Seliger, A. R., Gaskett, A. C., Wigsten, S. K. & Raguso, R. A. Corolla shape vs. size in flower choice by a nocturnal hawkmoth pollinator. Funct. Ecol. 26, 577–587 (2012).

    Google Scholar 

  • 55.

    Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. 228, 1193–1213 (2020).

    Google Scholar 

  • 56.

    Larsen, T. Butterflies of West Africa (Apollo Books, 2005).

    Google Scholar 

  • 57.

    Ballesteros-Mejia, L., Kitching, I. J., Jetz, W., Nagel, P. & Beck, J. Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Glob. Ecol. Biogeogr. 22, 586–595 (2013).

    Google Scholar 

  • 58.

    Cheek, M., Cable, S., Hepper, F. N., Ndam, N. & Watts, J. Mapping plant biodiversity on Mount Cameroon. In The Biodiversity of African Plants (eds van der Maesen, L. et al.) 110–120 (Springer, 1996). https://doi.org/10.1007/978-94-009-0285-5_16.

    Google Scholar 

  • 59.

    Weinstein, B. G. MotionMeerkat: integrating motion video detection and ecological monitoring. Methods Ecol. Evol. 6, 357–362 (2015).

    Google Scholar 

  • 60.

    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).

    Google Scholar 

  • 61.

    R Core Team. R: A language and environment for statistical computing (2019).

  • 62.

    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).

    Google Scholar 

  • 63.

    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 1–12 (2006).

    Google Scholar 

  • 64.

    Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).

    Google Scholar 

  • 65.

    Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

    Google Scholar 

  • 66.

    Bartoš, M. et al. Self-compatibility and autonomous selfing of plants in meadow communities. Plant Biol. 22, 120–128 (2020).

    Google Scholar 

  • 67.

    Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).

    Google Scholar 

  • 68.

    Hurvich, C. M. & Tsai, C.-L. A corrected akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal. 14, 271–279 (1993).

    Google Scholar 

  • 69.

    ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 50 (Microcomputer Power, 2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Innovations in water accessibility

    Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau