Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425. https://doi.org/10.1098/rsbl.2008.0118 (2008).
Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, Oxford, 2018).
Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087. https://doi.org/10.1038/ncomms14087 (2017).
Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585. https://doi.org/10.1038/s41467-020-17337-8 (2020).
Djurhuus, A. et al. Environmental DNA reveals seasonal shifts and potential interactions in a marine community. Nat. Commun. 11, 254. https://doi.org/10.1038/s41467-019-14105-1 (2020).
Klymus, K. E. et al. Reporting the limits of detection and quantification for environmental DNA assays. Environ. DNA 2, 271–282. https://doi.org/10.1002/edn3.29 (2020).
Sepulveda, A. J. et al. A round-robin evaluation of the repeatability and reproducibility of environmental DNA assays for dreissenid mussels. Environ. DNA 2, 446–459. https://doi.org/10.1002/edn3.68 (2020).
Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are Environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678. https://doi.org/10.1016/j.tree.2020.03.011 (2020).
Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17. https://doi.org/10.1007/s10592-015-0775-4 (2016).
Lacoursière-Roussel, A., Rosabal, M. & Bernatchez, L. Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions. Mol. Ecol. Resour. 16, 1401–1414. https://doi.org/10.1111/1755-0998.12522 (2016).
Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J. C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544. https://doi.org/10.1038/ncomms12544 (2016).
Shogren, A. J. et al. Controls on eDNA movement in streams: Transport, retention, and resuspension. Sci. Rep. 7, 5065. https://doi.org/10.1038/s41598-017-05223-1 (2017).
Pont, D. et al. Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation. Sci. Rep. 8, 10361. https://doi.org/10.1038/s41598-018-28424-8 (2018).
Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92. https://doi.org/10.1016/j.biocon.2014.11.038 (2015).
Lance, R. F. et al. Experimental observations on the decay of environmental DNA from bighead and silver carps. Manag. Biol. Invasion 8, 343. https://doi.org/10.3391/mbi.2017.8.3.08 (2017).
Tsuji, S., Ushio, M., Sakurai, S., Minamoto, T. & Yamanaka, H. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLoS ONE 12, e0176608. https://doi.org/10.1371/journal.pone.0176608 (2017).
Cristescu, M. E. Can environmental RNA revolutionize biodiversity science?. Trends Ecol. Evol. 34, 694–697. https://doi.org/10.1016/j.tree.2019.05.003 (2019).
Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: Opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121. https://doi.org/10.1007/s10531-020-01980-0 (2020).
Allan, E. A., Zhang, W. G., Lavery, A. C. & Govindarajan, A. F. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA. https://doi.org/10.1002/edn3.141 (2020).
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050. https://doi.org/10.1111/j.1365-294X.2012.05470.x (2012).
Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459. https://doi.org/10.1111/1365-2664.12306 (2014).
Minamoto, T. et al. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio. Mol. Ecol. Resour. 17, 324–333. https://doi.org/10.1111/1755-0998.12586 (2017).
Stewart, K. A. Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA. Biodivers. Conserv. 28, 983–1001. https://doi.org/10.1007/s10531-019-01709-8 (2019).
Foran, D. R. Relative degradation of nuclear and mitochondrial DNA: An experimental approach. J. Forensic Sci. 51, 766–770. https://doi.org/10.1111/j.1556-4029.2006.00176.x (2006).
Dysthe, J. C., Franklin, T. W., McKelvey, K. S., Young, M. K. & Schwartz, M. K. An improved environmental DNA assay for bull trout (Salvelinus confluentus) based on the ribosomal internal transcribed spacer I. PLoS ONE 13, e0206851. https://doi.org/10.1371/journal.pone.0206851 (2018).
Li, Y. & Breaker, R. R. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2’-hydroxyl group. J. Am. Chem. Soc. 121, 5364–5372. https://doi.org/10.1021/ja990592p (1999).
Fontaine, M. & Guillot, E. Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts. FEMS Microbiol. Lett. 226, 237–243. https://doi.org/10.1016/S0378-1097(03)00538-X (2003).
Voet, D. & Voet, J. G. Biochemistry 492–496 (Wiley, New York, 2011).
Eigner, J., Boedtker, H. & Michaels, G. The thermal degradation of nucleic acids. Biochem. Biophys. Acta. 51, 165–168. https://doi.org/10.1016/0006-3002(61)91028-9 (1961).
Mengoni, A. et al. Comparison of 16S rRNA and 16S rDNA T-RFLP approaches to study bacterial communities in soil microcosms treated with chromate as perturbing agent. Micro. Ecol. 50, 375–384. https://doi.org/10.1007/s00248-004-0222-4 (2005).
Westermann, A. J., Gorski, S. A. & Vogel, J. Dual RNA-seq of pathogen and host. Nat. Rev. Microbiol. 10, 618–630. https://doi.org/10.1038/nrmicro2852 (2012).
Blanco, G. & Blanco, A. Medical Biochemistry (Academic Press, Cambridge, 2017). https://doi.org/10.1016/B978-0-12-803550-4.00006-9.
Sidova, M., Tomankova, S., Abaffy, P., Kubista, M. & Sindelka, R. Effects of post-mortem and physical degradation on RNA integrity and quality. Biomol. Detect. Quantif. 5, 3–9. https://doi.org/10.1016/j.bdq.2015.08.002 (2015).
Vanderploeg, H. A., Liebig, J. R., Nalepa, T. F., Fahnenstiel, G. L. & Pothoven, S. A. Dreissena and the disappearance of the spring phytoplankton bloom in Lake Michigan. J. Great Lakes Res. 36, 50–59. https://doi.org/10.1016/j.jglr.2010.04.005 (2010).
Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Particle size distribution of environmental DNA from the nuclei of marine fish. Environ. Sci. Technol. 53, 9947–9956. https://doi.org/10.1021/acs.est.9b02833 (2019).
Jo, T., Murakami, H., Yamamoto, S., Masuda, R. & Minamoto, T. Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution. Ecol. Evol. 9, 1135–1146. https://doi.org/10.1002/ece3.4802 (2019).
Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M. & Duncan, R. P. Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA. Environ. Sci. Technol. 52, 6408–6416. https://doi.org/10.1021/acs.est.8b01071 (2018).
Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 10, e0122763. https://doi.org/10.1371/journal.pone.0122763 (2015).
Klymus, K. E., Richter, C. A., Chapman, D. C. & Paukert, C. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biol. Conserv. 183, 77–84. https://doi.org/10.1016/j.biocon.2014.11.020 (2015).
Jo, T. et al. Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA. Mol. Ecol. Resour. 17, e25–e33. https://doi.org/10.1111/1755-0998.12685 (2017).
Raymaekers, M., Smets, R., Maes, B. & Cartuyvels, R. Checklist for optimization and validation of real-time PCR assays. J. Clin. Lab. Anal. 23, 145–151. https://doi.org/10.1002/jcla.20307 (2009).
Satoh, M. & Kuroiwa, T. Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp. Cell Res. 196, 137–140. https://doi.org/10.1016/0014-4827(91)90467-9 (1991).
Moushomi, R., Wilgar, G., Carvalho, G., Creer, S. & Seymour, M. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Sci. Rep. 9, 12500. https://doi.org/10.1038/s41598-019-48984-7 (2019).
Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Estimating shedding and decay rates of environmental nuclear DNA with relation to water temperature and biomass. Environ. DNA 2, 140–151. https://doi.org/10.1002/edn3.51 (2020).
Eirín-López, J. M. et al. Molecular evolutionary characterization of the mussel Mytilus histone multigene family: First record of a tandemly repeated unit of five histone genes containing an H1 subtype with “orphon” features. J. Mol. Evol. 58, 131–144. https://doi.org/10.1007/s00239-003-2531-5 (2004).
Peñarrubia, L. et al. Validated methodology for quantifying infestation levels of dreissenid mussels in environmental DNA (eDNA) samples. Sci. Rep. 6, 39067. https://doi.org/10.1038/srep39067 (2016).
Gingera, T. D., Bajno, R., Docker, M. & Reist, J. Environmental DNA as a detection tool for zebra mussels Dreissena polymorpha (Pallas, 1771) at the forefront of an invasion event in Lake Winnipeg, Manitoba, Canada. Manag. Biol. Invasion 8, 287. https://doi.org/10.3391/mbi.2017.8.3.03 (2017).
Marshall, N. T. & Stepien, C. A. Invasion genetics from eDNA and thousands of larvae: A targeted metabarcoding assay that distinguishes species and population variation of zebra and quagga mussels. Ecol. Evol. 9, 3515–3538. https://doi.org/10.1002/ece3.4985 (2019).
Wood, S. A. et al. Release and degradation of environmental DNA and RNA in a marine system. Sci. Total Environ. 704, 135314. https://doi.org/10.1016/j.scitotenv.2019.135314 (2020).
Osley, M. A. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60, 827–861. https://doi.org/10.1146/annurev.bi.60.070191.004143 (1991).
Takeuchi, A. et al. Release of eDNA by different life history stages and during spawning activities of laboratory-reared Japanese eels for interpretation of oceanic survey data. Sci. Rep. 9, 1–9. https://doi.org/10.1038/s41598-019-42641-9 (2019).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2017). www.R-project.org.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01. (2015).
Lenth, R. et al. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.3. (2020). https://CRAN.R-project.org/package=emmeans.
Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867. https://doi.org/10.1021/acs.est.5b05672 (2016).
Collins, R. A. et al. Persistence of environmental DNA in marine systems. Commun. Biol. 1, 1–11. https://doi.org/10.1038/s42003-018-0192-6 (2018).
Kasai, A., Takada, S., Yamazaki, A., Masuda, R. & Yamanaka, H. The effect of temperature on environmental DNA degradation of Japanese eel. Fish. Sci. 86, 465–471. https://doi.org/10.1007/s12562-020-01409-1 (2020).
Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2019).
Source: Ecology - nature.com