Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).
Google Scholar
Mengel, K. & Kirkby, E. A. Principles of Plant Nutrition (Kluwer Academic Publishers, 2001).
Google Scholar
Reich, M., Aghajanzadeh, T. & De Kok, L. J. Physiological basis of plant nutrient use efficiency—Concepts, opportunities and challenges for its improvement. In Nutrient Use Efficiency in Plants: Concepts and Approaches (eds Hawkesford, M. J. et al.) (Springer, 2014).
Agren, G. I. Ideal nutrient productivities and nutrient proportions in plant growth. Plant Cell Environ. 11, 613–620 (1988).
Google Scholar
Weih, M., Hamner, K. & Pourazari, F. Analyzing plant nutrient uptake and utilization efficiencies: Comparison between crops and approaches. Plant Soil 430, 7–21 (2018).
Google Scholar
Sterner, R. W. & Elser, J. J. Ecological stoichiometry: The biology of elements from molecules to the biosphere (2002).
Reich, P. B. et al. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc. R. Soc. B Biol. Sci. 277, 877–883 (2010).
Google Scholar
Hutchinson, G. E. Population studies—Animal ecology and demography—Concluding remarks. Cold Spring Harbor. Symp. Quant. Biol. 22, 415–427 (1957).
Google Scholar
Agren, G. I. & Weih, M. Multi-dimensional plant element stoichiometry-looking beyond carbon, nitrogen, and phosphorus. Front. Plant Sci. 11, 23 (2020).
Google Scholar
Niklas, K. J. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Ann. Bot. 97, 155–163 (2006).
Google Scholar
Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).
Google Scholar
Ryan, P. R. et al. Early vigour improves phosphate uptake in wheat. J. Exp. Bot. 66, 7089–7100 (2015).
Google Scholar
Wiel, CCMvd., Linden, CGvd & Scholten, O. E. Improving phosphorus use efficiency in agriculture: Opportunities for breeding. Euphytica 207, 1–22 (2016).
Google Scholar
Bilal, H. M., Aziz, T., Maqsood, M. A., Farooq, M. & Yan, G. Categorization of wheat genotypes for phosphorus efficiency. PLoS ONE 13, e0205471 (2018).
Google Scholar
Wang, Z. et al. Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Front. Plant Sci. 10, 1727 (2020).
Google Scholar
Hauer-Jakli, M. & Traenkner, M. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: a systematic review and meta-analysis from 70 years of research. Front. Plant Sci. 10, 766 (2019).
Google Scholar
Chawade, A. et al. A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region. Physiol. Plant. 164, 442–451 (2018).
Google Scholar
Weih, M., Pourazari, F. & Vico, G. Nutrient stoichiometry in winter wheat: Element concentration pattern reflects developmental stage and weather. Sci. Rep. 6, 35958–35958 (2016).
Google Scholar
Hamner, K., Weih, M., Eriksson, J. & Kirchmann, H. Influence of nitrogen supply on macro- and micronutrient accumulation during growth of winter wheat. Field Crop Res. 213, 118–129 (2017).
Google Scholar
Jia, X., Liu, P. & Lynch, J. P. Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil. J. Exp. Bot. 69, 4961–4970 (2018).
Google Scholar
Kumar, A. et al. Root trait plasticity and plant nutrient acquisition in phosphorus limited soil. J. Plant Nutr. Soil Sci. 182, 945–952 (2019).
Google Scholar
Lynch, J. P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiol. 156, 1041–1049 (2011).
Google Scholar
Lynch, J. P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112, 347–357 (2013).
Google Scholar
Lambers, H., Shane, M., Cramer, M., Pearse, S. & Veneklaas, E. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann. Bot. 98, 693–713 (2006).
Google Scholar
Trachsel, S., Kaeppler, S. M., Brown, K. M. & Lynch, J. P. Maize root growth angles become steeper under low N conditions. Field Crop Res 140, 18–31 (2013).
Google Scholar
Jobbagy, E. G. & Jackson, R. B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53, 51–77 (2001).
Google Scholar
Sun, B. R., Gao, Y. Z. & Lynch, J. P. Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiol. 177, 90–104 (2018).
Google Scholar
Weih, M., Asplund, L. & Bergkvist, G. Assessment of nutrient use in annual and perennial crops: A functional concept for analyzing nitrogen use efficiency. Plant Soil 339, 513–520 (2011).
Google Scholar
Malhi, S. S., Johnston, A. M., Schoenau, J. J., Wang, Z. H. & Vera, C. L. Seasonal biomass accumulation and nutrient uptake of wheat, barley and oat on a Black Chernozern soil in Saskatchewan. Can. J. Plant Sci. 86, 1005–1014 (2006).
Google Scholar
Maeoka, R. E. et al. Changes in the phenotype of winter wheat varieties released between 1920 and 2016 in response to in-furrow fertilizer: Biomass allocation, yield, and grain protein concentration. Front. Plant Sci. 10, 1786 (2020).
Google Scholar
Pourazari, F., Vico, G., Ehsanzadeh, P. & Weih, M. Contrasting growth pattern and nitrogen economy in ancient and modern wheat varieties. Can. J. Plant Sci. 95, 851–860 (2015).
Google Scholar
Rietra, R. P. J. J., Heinen, M., Dimkpa, C. O. & Bindraban, P. S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 48, 1895–1920 (2017).
Google Scholar
Pedro, A., Savin, R. & Slafer, G. A. Crop productivity as related to single-plant traits at key phenological stages in durum wheat. Field Crop Res. 138, 42–51 (2012).
Google Scholar
Cakmak, I. & Yazici, A. M. Magnesium: A forgotten element in crop production. Better Crops Plant Food 94, 23–25 (2010).
Lancashire, P. D. et al. A uniform decimal code for growth-stages of crops and weeds. Ann. Appl. Biol. 119, 561–601 (1991).
Google Scholar
Trachsel, S., Kaeppler, S. M., Brown, K. M. & Lynch, J. P. Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341, 75–87 (2011).
Google Scholar
Colombi, T. & Walter, A. Root responses of triticale and soybean to soil compaction in the field are reproducible under controlled conditions. Funct. Plant Biol. 43, 114–128 (2016).
Google Scholar
Source: Ecology - nature.com