in

Evidence for magnesium–phosphorus synergism and co-limitation of grain yield in wheat agriculture

  • 1.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article 

    Google Scholar 

  • 2.

    Mengel, K. & Kirkby, E. A. Principles of Plant Nutrition (Kluwer Academic Publishers, 2001).

    Book 

    Google Scholar 

  • 3.

    Reich, M., Aghajanzadeh, T. & De Kok, L. J. Physiological basis of plant nutrient use efficiency—Concepts, opportunities and challenges for its improvement. In Nutrient Use Efficiency in Plants: Concepts and Approaches (eds Hawkesford, M. J. et al.) (Springer, 2014).

    Google Scholar 

  • 4.

    Agren, G. I. Ideal nutrient productivities and nutrient proportions in plant growth. Plant Cell Environ. 11, 613–620 (1988).

    Article 

    Google Scholar 

  • 5.

    Weih, M., Hamner, K. & Pourazari, F. Analyzing plant nutrient uptake and utilization efficiencies: Comparison between crops and approaches. Plant Soil 430, 7–21 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Sterner, R. W. & Elser, J. J. Ecological stoichiometry: The biology of elements from molecules to the biosphere (2002).

  • 7.

    Reich, P. B. et al. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc. R. Soc. B Biol. Sci. 277, 877–883 (2010).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Hutchinson, G. E. Population studies—Animal ecology and demography—Concluding remarks. Cold Spring Harbor. Symp. Quant. Biol. 22, 415–427 (1957).

    Article 

    Google Scholar 

  • 9.

    Agren, G. I. & Weih, M. Multi-dimensional plant element stoichiometry-looking beyond carbon, nitrogen, and phosphorus. Front. Plant Sci. 11, 23 (2020).

    Article 

    Google Scholar 

  • 10.

    Niklas, K. J. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Ann. Bot. 97, 155–163 (2006).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Hou, E. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Ryan, P. R. et al. Early vigour improves phosphate uptake in wheat. J. Exp. Bot. 66, 7089–7100 (2015).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Wiel, CCMvd., Linden, CGvd & Scholten, O. E. Improving phosphorus use efficiency in agriculture: Opportunities for breeding. Euphytica 207, 1–22 (2016).

    Article 

    Google Scholar 

  • 14.

    Bilal, H. M., Aziz, T., Maqsood, M. A., Farooq, M. & Yan, G. Categorization of wheat genotypes for phosphorus efficiency. PLoS ONE 13, e0205471 (2018).

    Article 

    Google Scholar 

  • 15.

    Wang, Z. et al. Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Front. Plant Sci. 10, 1727 (2020).

    Article 

    Google Scholar 

  • 16.

    Hauer-Jakli, M. & Traenkner, M. Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: a systematic review and meta-analysis from 70 years of research. Front. Plant Sci. 10, 766 (2019).

    Article 

    Google Scholar 

  • 17.

    Chawade, A. et al. A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region. Physiol. Plant. 164, 442–451 (2018).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Weih, M., Pourazari, F. & Vico, G. Nutrient stoichiometry in winter wheat: Element concentration pattern reflects developmental stage and weather. Sci. Rep. 6, 35958–35958 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Hamner, K., Weih, M., Eriksson, J. & Kirchmann, H. Influence of nitrogen supply on macro- and micronutrient accumulation during growth of winter wheat. Field Crop Res. 213, 118–129 (2017).

    Article 

    Google Scholar 

  • 20.

    Jia, X., Liu, P. & Lynch, J. P. Greater lateral root branching density in maize improves phosphorus acquisition from low phosphorus soil. J. Exp. Bot. 69, 4961–4970 (2018).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Kumar, A. et al. Root trait plasticity and plant nutrient acquisition in phosphorus limited soil. J. Plant Nutr. Soil Sci. 182, 945–952 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Lynch, J. P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiol. 156, 1041–1049 (2011).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Lynch, J. P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112, 347–357 (2013).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Lambers, H., Shane, M., Cramer, M., Pearse, S. & Veneklaas, E. Root structure and functioning for efficient acquisition of phosphorus: Matching morphological and physiological traits. Ann. Bot. 98, 693–713 (2006).

    Article 

    Google Scholar 

  • 25.

    Trachsel, S., Kaeppler, S. M., Brown, K. M. & Lynch, J. P. Maize root growth angles become steeper under low N conditions. Field Crop Res 140, 18–31 (2013).

    Article 

    Google Scholar 

  • 26.

    Jobbagy, E. G. & Jackson, R. B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53, 51–77 (2001).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Sun, B. R., Gao, Y. Z. & Lynch, J. P. Large crown root number improves topsoil foraging and phosphorus acquisition. Plant Physiol. 177, 90–104 (2018).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Weih, M., Asplund, L. & Bergkvist, G. Assessment of nutrient use in annual and perennial crops: A functional concept for analyzing nitrogen use efficiency. Plant Soil 339, 513–520 (2011).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Malhi, S. S., Johnston, A. M., Schoenau, J. J., Wang, Z. H. & Vera, C. L. Seasonal biomass accumulation and nutrient uptake of wheat, barley and oat on a Black Chernozern soil in Saskatchewan. Can. J. Plant Sci. 86, 1005–1014 (2006).

    Article 

    Google Scholar 

  • 30.

    Maeoka, R. E. et al. Changes in the phenotype of winter wheat varieties released between 1920 and 2016 in response to in-furrow fertilizer: Biomass allocation, yield, and grain protein concentration. Front. Plant Sci. 10, 1786 (2020).

    Article 

    Google Scholar 

  • 31.

    Pourazari, F., Vico, G., Ehsanzadeh, P. & Weih, M. Contrasting growth pattern and nitrogen economy in ancient and modern wheat varieties. Can. J. Plant Sci. 95, 851–860 (2015).

    Article 

    Google Scholar 

  • 32.

    Rietra, R. P. J. J., Heinen, M., Dimkpa, C. O. & Bindraban, P. S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 48, 1895–1920 (2017).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Pedro, A., Savin, R. & Slafer, G. A. Crop productivity as related to single-plant traits at key phenological stages in durum wheat. Field Crop Res. 138, 42–51 (2012).

    Article 

    Google Scholar 

  • 34.

    Cakmak, I. & Yazici, A. M. Magnesium: A forgotten element in crop production. Better Crops Plant Food 94, 23–25 (2010).

    Google Scholar 

  • 35.

    Lancashire, P. D. et al. A uniform decimal code for growth-stages of crops and weeds. Ann. Appl. Biol. 119, 561–601 (1991).

    Article 

    Google Scholar 

  • 36.

    Trachsel, S., Kaeppler, S. M., Brown, K. M. & Lynch, J. P. Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341, 75–87 (2011).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Colombi, T. & Walter, A. Root responses of triticale and soybean to soil compaction in the field are reproducible under controlled conditions. Funct. Plant Biol. 43, 114–128 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Seeking enhanced materials for nuclear reactors

    Concerns about reported harvests in European forests