in

Extreme temperatures compromise male and female fertility in a large desert bird

  • 1.

    Angilletta, M. J. Thermal Adaptation: A Theoretical And Empirical Analysis (Oxford University Press, 2009).

  • 2.

    Chown, S. L., Sinclair, B. J., Leinaas, H. P. & Gaston, K. J. Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biol. 2, e406 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 3.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    ADS  Article  Google Scholar 

  • 4.

    Kellermann, V., van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    PubMed  Article  Google Scholar 

  • 6.

    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl Acad. Sci. USA 113, 680–685 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 7.

    Geerts, A. N. et al. Rapid evolution of thermal tolerance in the water flea, Daphnia. Nat. Clim. Change 5, 665–668 (2015).

    ADS  Article  Google Scholar 

  • 8.

    Iossa, G. Sex-specific differences in thermal fertility limits. Trends Ecol. Evol. 34, 490–492 (2019).

    PubMed  Article  Google Scholar 

  • 9.

    Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).

    PubMed  Article  Google Scholar 

  • 10.

    Vasudeva, R. et al. Adaptive thermal plasticity enhances sperm and egg performance in a model insect. eLife 8, e49452 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Hurley, L. L., McDiarmid, C. S., Friesen, C. R., Griffith, S. C. & Rowe, M. Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc. R. Soc. B 285, 20172547 (2018).

    PubMed  Article  Google Scholar 

  • 12.

    Dahlke, F., Wohlrab, S., Butzin, M. & Pörtner, H. Thermal bottlenecks in the lifecycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Bathiany, S., Dakos, V., Scheffer, M. & Lenton, T. M. Climate models predict increasing temperature variability in poor countries. Sci. Adv. 4, 1–11 (2018).

    Article  Google Scholar 

  • 14.

    Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42 (2017).

    PubMed  Article  Google Scholar 

  • 15.

    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Sgrò, C. M. & Hoffmann, A. A. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248 (2004).

    PubMed  Article  Google Scholar 

  • 17.

    Wood, C. W. & Brodie, E. D. Environmental effects on the structure of the G-matrix. Evolution 69, 2927–2940 (2015).

    PubMed  Article  Google Scholar 

  • 18.

    Brommer, J. E., Merila, J., Sheldon, B. C. & Gustavsson, L. Natural selection and genetic variation for reproductive reaction norms in a wild bird population. Evolution 59, 1362–1371 (2005).

    PubMed  Article  Google Scholar 

  • 19.

    Brommer, J. E., Rattiste, K. & Wilson, A. J. Exploring plasticity in the wild: laying date–temperature reaction norms in the common gull Larus canus. Proc. R. Soc. B 275, 687–693 (2008).

    PubMed  Article  Google Scholar 

  • 20.

    Nussey, D. H., Postma, E., Gienapp, P., Visser, M. E. & Gienapp, P. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 21.

    Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 22.

    Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).

    ADS  Article  Google Scholar 

  • 23.

    Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Schiegg, K., Pasinelli, G., Walters, J. R. & Daniels, S. J. Inbreeding and experience affect response to climate change by endangered woodpeckers. Proc. R. Soc. B 269, 1153–1159 (2002).

    PubMed  Article  Google Scholar 

  • 25.

    Wilson, S., Norris, D. R., Wilson, A. G. & Arcese, P. Breeding experience and population density affect the ability of a songbird to respond to future climate variation. Proc. R. Soc. B 274, 2539–2545 (2007).

    PubMed  Article  Google Scholar 

  • 26.

    Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. B 266, 2487–2490 (1999).

    CAS  Article  Google Scholar 

  • 27.

    Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA 117, 18557–18565 (2020).

    PubMed  Article  CAS  Google Scholar 

  • 28.

    Gienapp, P., Postma, E. & Visser, M. E. Why breeding time has not responded to selection for earlier breeding in a songbird population. Evolution 60, 2381 (2006).

    PubMed  Article  Google Scholar 

  • 29.

    Jàrvinen, A. Global warming and egg size of birds. Ecography 17, 108–110 (1994).

    Article  Google Scholar 

  • 30.

    Kitaysky, A. S. & Golubova, E. G. Climate change causes contrasting trends in reproductive performance of planktivorous and piscivorous alcids. J. Anim. Ecol. 69, 248–262 (2000).

    Article  Google Scholar 

  • 31.

    Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).

    PubMed  Article  Google Scholar 

  • 32.

    Weatherhead, P. J. Effects of climate variation on timing of nesting, reproductive success, and offspring sex ratios of red-winged blackbirds. Oecologia 144, 168–175 (2005).

    ADS  PubMed  Article  Google Scholar 

  • 33.

    Auer, S. K. & Martin, T. E. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success. Glob. Change Biol. 19, 411–419 (2013).

    ADS  Article  Google Scholar 

  • 34.

    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA116, 21609–21615 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).

    Article  Google Scholar 

  • 36.

    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    Magige, F. J., Stokke, B. G., Sortland, R. & Røskaft, E. Breeding biology of ostriches (Struthio camelus) in the Serengeti ecosystem, Tanzania. Afr. J. Ecol. 47, 400–408 (2009).

    Article  Google Scholar 

  • 38.

    Bertram, B. C. R. The Ostrich Communal Nesting System (Princeton University Press, New Jersey, 1992).

  • 39.

    Kimwele, C. N. & Graves, J. A. A molecular genetic analysis of the communal nesting of the ostrich (Struthio camelus). Mol. Ecol. 12, 229–236 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 40.

    Maloney, S. K. Thermoregulation in ratites: a review. Aust. J. Exp. Agric. 48, 1293–1301 (2008).

    Article  Google Scholar 

  • 41.

    Hassan, S. M., Siam, A. A., Mady, M. E. & Cartwright, A. L. Egg storage period and weight effects on hatchability of ostrich (Struthio camelus) eggs. Poult. Sci. 84, 1908–1912 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Gonzalez, A., Satterlee, D. G., Moharer, F. & Cadd, G. G. Factors affecting ostrich egg hatchability. Poult. Sci. 78, 1257–1262 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Roff, D. A. & Wilson, A. J. Quantifying genotype-by-environment interactions in laboratory systems. In Genotype‐by‐Environment Interactions and Sexual Selection (eds. Hunt, J. & Hosken, D.) 100–136 (John Wiley & Sons, Ltd, 2014).

  • 44.

    Christians, J. K. Avian egg size: variation within species and inflexibility within individuals. Biol. Rev. Camb. Philos. Soc. 77, 1–26 (2002).

    PubMed  Article  Google Scholar 

  • 45.

    Lack, D. The Natural Regulation of Animal Numbers (Clarendon Press, 1954).

  • 46.

    Perrins, C. M. The timing of birds‘ breeding seasons. Ibis 112, 242–255 (1970).

    Article  Google Scholar 

  • 47.

    Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 1–11 (2018).

    ADS  CAS  Article  Google Scholar 

  • 48.

    McAfee, A. et al. Vulnerability of honey bee queens to heat-induced loss of fertility. Nat. Sustain 3, 367–376 (2020).

    Article  Google Scholar 

  • 49.

    Pérez-Crespo, M., Pintado, B. & Gutiérrez-Adán, A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol. Reprod. Dev. 75, 40–47 (2008).

    PubMed  Article  CAS  Google Scholar 

  • 50.

    Hansen, P. J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. B 364, 3341–3350 (2009).

    Article  Google Scholar 

  • 51.

    Moreno, R. D., Lagos-Cabre, R., Bunay, J., Urzua, N. & Bustamante-Marin, X. Molecular basis of heat stress damage in mammalian testis. In Testis: Anatomy, Physiology and Pathology (eds. Nemoto, Y. & Inaba, N.) 127–155 (Nova Science, 2012).

  • 52.

    Karaca, A. G., Parker, H. M., Yeatman, J. B. & McDaniel, C. D. The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. Br. Poult. Sci. 43, 621–628 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Mita, P., Hinton, B. T. & Dufour, J. M. The blood–testis and blood–epididymis barriers are more than just their tight junctions. Biol. Reprod. 84, 851–858 (2011).

    Article  CAS  Google Scholar 

  • 54.

    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).

    Article  Google Scholar 

  • 55.

    Ojanen, M. Composition of the eggs of the great tit (Parus major) and pied flycatcher (Ficedula hypoleuca). Ann. Zool. Fenn. 20, 57–63 (1983).

    Google Scholar 

  • 56.

    Krist, M. Egg size and offspring quality: a meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).

    PubMed  Article  Google Scholar 

  • 57.

    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Pearson, 1996).

  • 58.

    Lynch, M. & Gabriel, W. Environmental tolerance. Am. Nat. 129, 283–303 (1987).

    Article  Google Scholar 

  • 59.

    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).

    Article  Google Scholar 

  • 60.

    Whitlock, M. C. The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148, S65 (1996).

    Article  Google Scholar 

  • 61.

    Pen, I. & Weissing, F. J. Towards a unified theory of cooperative breeding: the role of ecology and life history re-examined. Proc. R. Soc. B 267, 2411–2418 (2000).

    Article  Google Scholar 

  • 62.

    Emlen, S. T. The evolution of helping. I. An ecological constraints model. Am. Nat. 119, 29–39 (1982).

    Article  Google Scholar 

  • 63.

    Rubenstein, D. R. Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy. Proc. Natl Acad. Sci. USA 108, 10816–10822 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 64.

    Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 0057 (2017).

    Article  Google Scholar 

  • 65.

    Rubenstein, D. R. & Lovette, I. J. Temporal environmental variability drives the evolution of cooperative breeding in birds. Curr. Biol. 17, 1414–1419 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 201613625 (2017).

    Google Scholar 

  • 67.

    Vincze, O. et al. Parental cooperation in a changing climate: fluctuating environments predict shifts in care division. Glob. Ecol. Biogeogr. 26, 347–358 (2017).

    Article  Google Scholar 

  • 68.

    Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).

    Article  Google Scholar 

  • 69.

    Cloete, S. W. P. et al. Variance components for live weight, body measurements and reproductive traits of pair-mated ostrich females. Br. Poult. Sci. 47, 147–158 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 70.

    Rybnik, P. K., Horbanczuk, J. O., Naranowicz, H., Lukaszewicz, E. & Malecki, I. A. Semen collection in the ostrich (Struthio camelus) using a dummy or a teaser female. Br. Poult. Sci. 48, 635–643 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Brand, T. S., Olivier, T. R. & Gous, R. M. The response in food intake and reproductive parameters of breeding ostriches to increasing dietary energy. South Afr. J. Anim. Sci. 40, 434–437 (2010).

    Google Scholar 

  • 72.

    Brand, T. S., Olivier, T. R. & Gous, R. M. The reproductive response of female ostriches to dietary protein. Br. Poult. Sci. 56, 232–238 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Martin, P. A., Reimers, T. J., Lodge, J. R. & Dziuk, P. J. The effect of ratios and numbers of spermatozoa mixed from two males on proportions of offspring. J. Reprod. Fertil. 39, 251–258 (1974).

    CAS  PubMed  Article  Google Scholar 

  • 74.

    Birkhead, T. R. & Møller, A. P. Sperm Competition and Sexual Selection (Academic Press, 1998).

  • 75.

    Birkhead, T. R. & Biggins, J. D. Sperm competition mechanisms in birds: models and data. Behav. Ecol. 9, 253–260 (1998).

    Article  Google Scholar 

  • 76.

    Soley, J. T. & Roberts, J. C. Ultrastructure of ostrich (Struthio camelus) spermatozoa. II. Scanning electron microscopy. Onderstepoort J. Vet. Res. 61, 239–246 (1994).

    CAS  PubMed  Google Scholar 

  • 77.

    Lake, P. E. & Stewart, J. M. Artificial Insemination in Poultry. Ministry of Agriculture Fisheries and Food, Bulletin 213 (Her Majesty’s Stationery Office, 1978).

  • 78.

    Bonato, M., Malecki, I. A., Rybnik-Trzaskowska, P. K., Cornwallis, C. K. & Cloete, S. W. P. Predicting ejaculate quality and libido in male ostriches: effect of season and age. Anim. Reprod. Sci. 151, 49–55 (2014).

    PubMed  Article  Google Scholar 

  • 79.

    Bonato, M., Rybnik, P. K., Malecki, I. A., Cornwallis, C. K. & Cloete, S. W. P. Twice daily collection yields greater semen output and does not affect male libido in the ostrich. Anim. Reprod. Sci. 123, 258–264 (2011).

    PubMed  Article  Google Scholar 

  • 80.

    Muvhali, P. T. et al. Ostrich ejaculate characteristics and male libido around equinox and solstice dates. Trop. Anim. Health and Prod. 52, 2609–2619 (2020).

    CAS  Article  Google Scholar 

  • 81.

    Brand, Z., Cloete, S. W. P., Brown, C. R. & Malecki, I. A. Systematic factors that affect ostrich egg incubation traits. South Afr. J. Anim. Sci. 38, 315–325 (2008).

    Google Scholar 

  • 82.

    Bronneberg, R. G. G. et al. The relation between ultrasonographic observations in the oviduct and plasma progesterone, luteinizing hormone and estradiol during the egg laying cycle in ostriches. Domest. Anim. Endocrinol. 32, 15–28 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 83.

    Van Schalkwyk, S. J., Cloete, S. W. P. & De Kock, J. A. Repeatability and phenotypic correlations for body weight and reproduction in commercial ostrich breeding pairs. Br. Poult. Sci. 37, 953–962 (1996).

    PubMed  Article  Google Scholar 

  • 84.

    Jones, R. C. & Lin, M. Spermatogenesis in birds. In Oxford Reviews of Reproductive Biology, Vol. 15 (ed. Milligan, S. R.) (Oxford University Press, 1993).

  • 85.

    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).

  • 86.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  • 87.

    Araya-Ajoy, Y. G. & Dingemanse, N. J. Repeatability, heritability, and age-dependence of seasonal plasticity in aggressiveness in a wild passerine bird. J. Anim. Ecol. 86, 227–238 (2017).

    PubMed  Article  Google Scholar 

  • 88.

    Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).

    Article  Google Scholar 

  • 89.

    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).

    Article  Google Scholar 

  • 90.

    Wilson, A. J. Why h2 does not always equal VA/VP. J. Evol. Biol. 21, 647–650 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 91.

    de Villemereuil, P., Morrissey, M. B., Nakagawa, S. & Schielzeth, H. Fixed-effect variance and the estimation of repeatabilities and heritabilities: Issues and solutions. J. Evol. Biol. 31, 621–632 (2018).

    PubMed  Article  Google Scholar 

  • 92.

    de Villemereuil, P., Schielzeth, H., Nakagawa, S. & Morrissey, M. General methods for evolutionary quantitative genetic inference from generalized mixed models. Genetics 204, 1281–1294 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 93.

    BirdLife International. BirdLife International and Handbook of the Birds of the World. Bird Species Distribution Maps of the World (BirdLife International, 2019).

  • 94.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Geologists produce new timeline of Earth’s Paleozoic climate changes

    Sludge amendment accelerating reclamation process of reconstructed mining substrates