in

Fire enhances forest degradation within forest edge zones in Africa

  • 1.

    Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article 

    Google Scholar 

  • 2.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).

    Article 

    Google Scholar 

  • 3.

    Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).

    Article 

    Google Scholar 

  • 4.

    Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020).

    Article 

    Google Scholar 

  • 5.

    Aragao, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).

    Article 

    Google Scholar 

  • 6.

    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).

    Article 

    Google Scholar 

  • 7.

    Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).

    Article 

    Google Scholar 

  • 8.

    Kunert, N., Teophilo Aparecido, L. M., Higuchi, N., dos Santos, J. & Trumbore, S. Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agric. For. Meteorol. 213, 183–192 (2015).

    Article 

    Google Scholar 

  • 9.

    Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).

    Article 

    Google Scholar 

  • 10.

    Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).

    Article 

    Google Scholar 

  • 11.

    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).

    Article 

    Google Scholar 

  • 12.

    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e150005 (2015).

    Article 

    Google Scholar 

  • 13.

    Briant, G., Gond, V. & Laurance, S. G. W. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. Conserv. 143, 2763–2769 (2010).

    Article 

    Google Scholar 

  • 14.

    Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

    Article 

    Google Scholar 

  • 15.

    FAOSTAT Database (FAO, 2020); http://www.fao.org/faostat/en/#data/FO

  • 16.

    World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).

  • 17.

    Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).

    Article 

    Google Scholar 

  • 18.

    Hufkens, K. et al. Historical aerial surveys map long-term changes of forest cover and structure in the central Congo basin. Remote Sens. 12, 638 (2020).

    Article 

    Google Scholar 

  • 19.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article 

    Google Scholar 

  • 20.

    Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).

    Article 

    Google Scholar 

  • 21.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 

    Google Scholar 

  • 22.

    Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Preprint at Copernicus https://doi.org/10.5194/essd-2020-148 (2020).

  • 23.

    Santoro, M. & Cartus, O. GlobBiomass dataset of forest biomass, Africa (25 m). Zenodo https://doi.org/10.5281/zenodo.4725667 (2020).

  • 24.

    Chuvieco, E., Pettinari, L. M., Lizundia Loiola, J., Storm, T. & Padilla Parellada, M. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Grid Product Version 5.1 (Centre for Environmental Data Analysis, 2019).

  • 25.

    Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.006

  • 26.

    Laurance, W. F. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 141, 1731–1744 (2008).

    Article 

    Google Scholar 

  • 27.

    Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).

    Article 

    Google Scholar 

  • 28.

    Kato, S. et al. Surface irradiances of edition 4.0 Clouds and the Earth’s radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Clim. 31, 4501–4527 (2018).

    Article 

    Google Scholar 

  • 29.

    Running, S., Mu, Q. & Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2017); https://doi.org/10.5067/MODIS/MOD16A2.006

  • 30.

    Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article 

    Google Scholar 

  • 31.

    Gaviria, J., Turner, B. L. & Engelbrecht, B. M. J. Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8, e01712 (2017).

    Article 

    Google Scholar 

  • 32.

    Alemayehu, T., van Griensven, A., Woldegiorgis, B. T. & Bauwens, W. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 21, 4449–4467 (2017).

    Article 

    Google Scholar 

  • 33.

    Kotto-Same, J., Woomer, P. L., Appolinaire, M. & Louis, Z. Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agric. Ecosyst. Environ. 65, 245–256 (1997).

    Article 

    Google Scholar 

  • 34.

    Tyukavina, A. et al. Congo basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).

    Article 

    Google Scholar 

  • 35.

    Rejou-Mechain, M. et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11, 6827–6840 (2014).

    Article 

    Google Scholar 

  • 36.

    Tropek, R. et al. Comment on “high-resolution global maps of 21st-century forest cover change”. Science 344, 981 (2014).

    Article 

    Google Scholar 

  • 37.

    Global Forest Watch (World Resources Institute, 2019); https://data.globalforestwatch.org/datasets/planted-forests

  • 38.

    Roteta, E., Bastarrika, A., Padilla, M., Storm, T. & Chuvieco, E. Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 222, 1–17 (2019).

    Article 

    Google Scholar 

  • 39.

    Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).

    Article 

    Google Scholar 

  • 40.

    Laurance, S. G. W. Responses of understory rain forest birds to road edges in central Amazonia. Ecol. Appl. 14, 1344–1357 (2004).

    Article 

    Google Scholar 

  • 41.

    Cochrane, M. A. & Laurance, W. F. Synergisms among fire, land use, and climate change in the Amazon. AMBIO 37, 522–527 (2008).

    Article 

    Google Scholar 

  • 42.

    Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    Article 

    Google Scholar 

  • 43.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Microbiome diversity and host immune functions influence survivorship of sponge holobionts under future ocean conditions

    Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators