Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Google Scholar
Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).
Google Scholar
Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).
Google Scholar
Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020).
Google Scholar
Aragao, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).
Google Scholar
Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).
Google Scholar
Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).
Google Scholar
Kunert, N., Teophilo Aparecido, L. M., Higuchi, N., dos Santos, J. & Trumbore, S. Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agric. For. Meteorol. 213, 183–192 (2015).
Google Scholar
Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).
Google Scholar
Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).
Google Scholar
Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).
Google Scholar
Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e150005 (2015).
Google Scholar
Briant, G., Gond, V. & Laurance, S. G. W. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. Conserv. 143, 2763–2769 (2010).
Google Scholar
Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).
Google Scholar
FAOSTAT Database (FAO, 2020); http://www.fao.org/faostat/en/#data/FO
World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).
Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).
Google Scholar
Hufkens, K. et al. Historical aerial surveys map long-term changes of forest cover and structure in the central Congo basin. Remote Sens. 12, 638 (2020).
Google Scholar
van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).
Google Scholar
Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Preprint at Copernicus https://doi.org/10.5194/essd-2020-148 (2020).
Santoro, M. & Cartus, O. GlobBiomass dataset of forest biomass, Africa (25 m). Zenodo https://doi.org/10.5281/zenodo.4725667 (2020).
Chuvieco, E., Pettinari, L. M., Lizundia Loiola, J., Storm, T. & Padilla Parellada, M. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Grid Product Version 5.1 (Centre for Environmental Data Analysis, 2019).
Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.006
Laurance, W. F. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 141, 1731–1744 (2008).
Google Scholar
Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).
Google Scholar
Kato, S. et al. Surface irradiances of edition 4.0 Clouds and the Earth’s radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Clim. 31, 4501–4527 (2018).
Google Scholar
Running, S., Mu, Q. & Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2017); https://doi.org/10.5067/MODIS/MOD16A2.006
Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).
Google Scholar
Gaviria, J., Turner, B. L. & Engelbrecht, B. M. J. Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8, e01712 (2017).
Google Scholar
Alemayehu, T., van Griensven, A., Woldegiorgis, B. T. & Bauwens, W. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 21, 4449–4467 (2017).
Google Scholar
Kotto-Same, J., Woomer, P. L., Appolinaire, M. & Louis, Z. Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agric. Ecosyst. Environ. 65, 245–256 (1997).
Google Scholar
Tyukavina, A. et al. Congo basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).
Google Scholar
Rejou-Mechain, M. et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11, 6827–6840 (2014).
Google Scholar
Tropek, R. et al. Comment on “high-resolution global maps of 21st-century forest cover change”. Science 344, 981 (2014).
Google Scholar
Global Forest Watch (World Resources Institute, 2019); https://data.globalforestwatch.org/datasets/planted-forests
Roteta, E., Bastarrika, A., Padilla, M., Storm, T. & Chuvieco, E. Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 222, 1–17 (2019).
Google Scholar
Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).
Google Scholar
Laurance, S. G. W. Responses of understory rain forest birds to road edges in central Amazonia. Ecol. Appl. 14, 1344–1357 (2004).
Google Scholar
Cochrane, M. A. & Laurance, W. F. Synergisms among fire, land use, and climate change in the Amazon. AMBIO 37, 522–527 (2008).
Google Scholar
Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).
Google Scholar
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Google Scholar
Source: Ecology - nature.com