in

Functional diversity outperforms taxonomic diversity in revealing short-term trampling effects

  • 1.

    Dengler, J. et al. Biodiversity of palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182(1), 1–14 (2014).

    Article 

    Google Scholar 

  • 2.

    Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Torok, P. et al. Step(pe) up! Raising the profile of the Palaearctic natural grasslands. Biodivers. Conserv. 25(12), 2187–2195 (2016).

    Article 

    Google Scholar 

  • 4.

    Kuss, F. R. & Graefe, A. R. Effects of recreation trampling on natural area vegetation. J. Leis. Res. 17, 165–183 (1985).

    Article 

    Google Scholar 

  • 5.

    Buckley, R. C. & Pannell, J. Environmental impacts of tourism and recreation in national parks and conservation reserves. J. Tourism Stud. 1, 24–32 (1990).

    Google Scholar 

  • 6.

    Yorks, T. et al. Toleration of traffic by vegetation: Life form conclusions and summary extracts from a comprehensive data base. Environ. Manage. 21, 12–131 (1997).

    Article 

    Google Scholar 

  • 7.

    Gouvenain, R. C. Indirect impacts of soil trampling on tree growth and plant succession in the north cascade mountains of Washington (1996).

  • 8.

    Xu, L., Yu, F. H. & Drunen, E. V. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree. Ann. Bot. 109, 1001–1008 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Bayfield, N. G. Use and deterioration of some Scottish hill paths. J. Appl. Ecol. 10, 639–648 (1973).

    Article 

    Google Scholar 

  • 10.

    Liddle, M. J. A selective review of the ecological effects of human trampling on natural ecosystems. Biol. Cons. 7, 17–36 (1975).

    Article 

    Google Scholar 

  • 11.

    Frissell, S. S. Judging recreational impacts on wilderness campsites. J. Forest. 76, 481–483 (1978).

    Google Scholar 

  • 12.

    Wagar, J. A. How to predict which vegetated areas will stand up best under ‘active’ recreation. Am. Recreat. J. 1, 20–21 (1961).

    Google Scholar 

  • 13.

    Cole, D. N. & Bayfield, N. G. Recreational trampling of vegetation: Standard experimental procedures. Biol. Cons. 63(3), 209–215 (1993).

    Article 

    Google Scholar 

  • 14.

    Prescott, O. & Stewart, G. Assessing the impacts of human trampling on vegetation: A systematic review and meta-analysis of experimental evidence. PeerJ 2, e360 (2014).

    Article 

    Google Scholar 

  • 15.

    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).

    Article 

    Google Scholar 

  • 17.

    Petchey, O. L. & Gaston, K. J. Functional diversity, species richness and composition. Ecol. Lett. 5, 402–411 (2002).

    Article 

    Google Scholar 

  • 18.

    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48(5), 1079–1087 (2011).

    Article 

    Google Scholar 

  • 19.

    Mouillot, D. et al. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Carmona, C. P. et al. Traits without borders: Integrating functional diversity across scales. Trends Ecol. Evol. 31(5), 382–394 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18, 359–367 (2015).

    Article 

    Google Scholar 

  • 22.

    Pickering, C. M. & Barros, A. Using functional traits to assess the resistance of subalpine grassland to trampling by mountain biking and hiking. J. Environ. Manage. 164, 129–136 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Baraloto, C., Herault, B. & Paine, C. E. T. Contrasting taxonomic and functional responses of a tropic tree community to selective logging. J. Appl. Ecol. 49, 861–870 (2012).

    Article 

    Google Scholar 

  • 24.

    Magnago, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).

    Article 

    Google Scholar 

  • 25.

    Marion, J. L. & Cole, D. N. Spatial and temporal variation in soil and vegetation impacts on campsites. Ecol. Appl. 6, 520–530 (1996).

    Article 

    Google Scholar 

  • 26.

    Roovers, P. et al. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl. Veg. Sci. 7, 111–118 (2004).

    Article 

    Google Scholar 

  • 27.

    Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18(3), 359–367 (2015).

    Article 

    Google Scholar 

  • 28.

    Zamora, R. Functional equivalence in plant-animal interactions: Ecological and evolutionary consequences. Oikos 88(2), 442–447 (2000).

    Article 

    Google Scholar 

  • 29.

    Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166–172 (2005).

    Article 

    Google Scholar 

  • 30.

    Mouchet, M. A. et al. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).

    Article 

    Google Scholar 

  • 31.

    Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U.S.A. 104, 20684–20689 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Suding, K. N. & Goldstein, L. J. Testing the Holy Grail framework: Using functional traits to predict ecosystem change. New Phytol. 180, 559–562 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    De Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).

    Article 

    Google Scholar 

  • 34.

    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Tian, K., Guo, H. J. & Yang, Y. M. Ecological structures and functions of plateau wetlands in China (Chinese Science Press, 2009).

    Google Scholar 

  • 36.

    Garnier, E. et al. standardized protocol for the determination of specific leaf size and leaf dry matter content. Funct. Ecol. 15, 688–695 (2001).

    Article 

    Google Scholar 

  • 37.

    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Article 

    Google Scholar 

  • 38.

    Mason, N. W. H. et al. An index of functional diversity. J. Veg. Sci. 14, 571–578 (2003).

    Article 

    Google Scholar 

  • 39.

    Villeger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Article 

    Google Scholar 

  • 41.

    Cianciaruso, M. V. et al. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Lepš, J. et al. Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects. Ecography 34, 856–863 (2011).

    Article 

    Google Scholar 

  • 43.

    Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: What proportion of the species need to be measured?. Appl. Veg. Sci. 10, 91–96 (2007).

    Article 

    Google Scholar 

  • 45.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Oksanen, J., Blanchet, F. G., Friendly, M. et al. Vegan: Community Ecology Package. R package version 2.5–7 (2020).

  • 47.

    Laliberté, E., Legendre, P., Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014).

  • Long-term trends in the body condition of parents and offspring of Tengmalm’s owls under fluctuating food conditions and climate change

    Refocusing multiple stressor research around the targets and scales of ecological impacts