in

Functional diversity outperforms taxonomic diversity in revealing short-term trampling effects

  • 1.

    Dengler, J. et al. Biodiversity of palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182(1), 1–14 (2014).

    Article 

    Google Scholar 

  • 2.

    Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Torok, P. et al. Step(pe) up! Raising the profile of the Palaearctic natural grasslands. Biodivers. Conserv. 25(12), 2187–2195 (2016).

    Article 

    Google Scholar 

  • 4.

    Kuss, F. R. & Graefe, A. R. Effects of recreation trampling on natural area vegetation. J. Leis. Res. 17, 165–183 (1985).

    Article 

    Google Scholar 

  • 5.

    Buckley, R. C. & Pannell, J. Environmental impacts of tourism and recreation in national parks and conservation reserves. J. Tourism Stud. 1, 24–32 (1990).

    Google Scholar 

  • 6.

    Yorks, T. et al. Toleration of traffic by vegetation: Life form conclusions and summary extracts from a comprehensive data base. Environ. Manage. 21, 12–131 (1997).

    Article 

    Google Scholar 

  • 7.

    Gouvenain, R. C. Indirect impacts of soil trampling on tree growth and plant succession in the north cascade mountains of Washington (1996).

  • 8.

    Xu, L., Yu, F. H. & Drunen, E. V. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree. Ann. Bot. 109, 1001–1008 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Bayfield, N. G. Use and deterioration of some Scottish hill paths. J. Appl. Ecol. 10, 639–648 (1973).

    Article 

    Google Scholar 

  • 10.

    Liddle, M. J. A selective review of the ecological effects of human trampling on natural ecosystems. Biol. Cons. 7, 17–36 (1975).

    Article 

    Google Scholar 

  • 11.

    Frissell, S. S. Judging recreational impacts on wilderness campsites. J. Forest. 76, 481–483 (1978).

    Google Scholar 

  • 12.

    Wagar, J. A. How to predict which vegetated areas will stand up best under ‘active’ recreation. Am. Recreat. J. 1, 20–21 (1961).

    Google Scholar 

  • 13.

    Cole, D. N. & Bayfield, N. G. Recreational trampling of vegetation: Standard experimental procedures. Biol. Cons. 63(3), 209–215 (1993).

    Article 

    Google Scholar 

  • 14.

    Prescott, O. & Stewart, G. Assessing the impacts of human trampling on vegetation: A systematic review and meta-analysis of experimental evidence. PeerJ 2, e360 (2014).

    Article 

    Google Scholar 

  • 15.

    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).

    Article 

    Google Scholar 

  • 17.

    Petchey, O. L. & Gaston, K. J. Functional diversity, species richness and composition. Ecol. Lett. 5, 402–411 (2002).

    Article 

    Google Scholar 

  • 18.

    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48(5), 1079–1087 (2011).

    Article 

    Google Scholar 

  • 19.

    Mouillot, D. et al. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 20.

    Carmona, C. P. et al. Traits without borders: Integrating functional diversity across scales. Trends Ecol. Evol. 31(5), 382–394 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18, 359–367 (2015).

    Article 

    Google Scholar 

  • 22.

    Pickering, C. M. & Barros, A. Using functional traits to assess the resistance of subalpine grassland to trampling by mountain biking and hiking. J. Environ. Manage. 164, 129–136 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Baraloto, C., Herault, B. & Paine, C. E. T. Contrasting taxonomic and functional responses of a tropic tree community to selective logging. J. Appl. Ecol. 49, 861–870 (2012).

    Article 

    Google Scholar 

  • 24.

    Magnago, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).

    Article 

    Google Scholar 

  • 25.

    Marion, J. L. & Cole, D. N. Spatial and temporal variation in soil and vegetation impacts on campsites. Ecol. Appl. 6, 520–530 (1996).

    Article 

    Google Scholar 

  • 26.

    Roovers, P. et al. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl. Veg. Sci. 7, 111–118 (2004).

    Article 

    Google Scholar 

  • 27.

    Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18(3), 359–367 (2015).

    Article 

    Google Scholar 

  • 28.

    Zamora, R. Functional equivalence in plant-animal interactions: Ecological and evolutionary consequences. Oikos 88(2), 442–447 (2000).

    Article 

    Google Scholar 

  • 29.

    Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166–172 (2005).

    Article 

    Google Scholar 

  • 30.

    Mouchet, M. A. et al. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).

    Article 

    Google Scholar 

  • 31.

    Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U.S.A. 104, 20684–20689 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Suding, K. N. & Goldstein, L. J. Testing the Holy Grail framework: Using functional traits to predict ecosystem change. New Phytol. 180, 559–562 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    De Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).

    Article 

    Google Scholar 

  • 34.

    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Tian, K., Guo, H. J. & Yang, Y. M. Ecological structures and functions of plateau wetlands in China (Chinese Science Press, 2009).

    Google Scholar 

  • 36.

    Garnier, E. et al. standardized protocol for the determination of specific leaf size and leaf dry matter content. Funct. Ecol. 15, 688–695 (2001).

    Article 

    Google Scholar 

  • 37.

    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).

    Article 

    Google Scholar 

  • 38.

    Mason, N. W. H. et al. An index of functional diversity. J. Veg. Sci. 14, 571–578 (2003).

    Article 

    Google Scholar 

  • 39.

    Villeger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Article 

    Google Scholar 

  • 41.

    Cianciaruso, M. V. et al. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Lepš, J. et al. Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects. Ecography 34, 856–863 (2011).

    Article 

    Google Scholar 

  • 43.

    Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: What proportion of the species need to be measured?. Appl. Veg. Sci. 10, 91–96 (2007).

    Article 

    Google Scholar 

  • 45.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Oksanen, J., Blanchet, F. G., Friendly, M. et al. Vegan: Community Ecology Package. R package version 2.5–7 (2020).

  • 47.

    Laliberté, E., Legendre, P., Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014).


  • Source: Ecology - nature.com

    Institute Professor Paula Hammond named to White House science council

    Mycorrhizal types influence island biogeography of plants