in

General decline in the diversity of the airborne microbiota under future climatic scenarios

  • 1.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, 9214 (2017).

    Article 

    Google Scholar 

  • 2.

    Creamean, J. M. et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science 339, 1572–1578 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Hervàs, A., Camarero, L., Reche, I. & Casamayor, E. O. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ. Microbiol. 11, 1612–1623 (2009).

    Article 

    Google Scholar 

  • 4.

    Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112, 5756–5761 (2015).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Brown, J. K. & Hovmøller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Mazar, Y., Cytryn, E., Erel, Y. & Rudich, Y. Effect of dust storms on the atmospheric microbiome in the Eastern Mediterranean. Environ. Sci. Technol. 50, 4194–4202 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Griffin, E. A. & Carson, W. P. The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot. Rev. 81, 105–149 (2015).

    Article 

    Google Scholar 

  • 8.

    Guerrieri, R. et al. Partitioning between atmospheric deposition and canopy microbial nitrification into throughfall nitrate fluxes in a Mediterranean forest. J. Ecol. 108, 626–640 (2020).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Fröhlich-Nowoisky, J. et al. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376 (2016).

    Article 

    Google Scholar 

  • 10.

    Hutchins, D. A. et al. Climate change microbiology—Problems and perspectives. Nat. Rev. Microbiol. 17, 391–396 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Tipton, L. et al. Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory. Proc. Natl. Acad. Sci. 116, 25728–25733 (2019).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Cáliz, J., Triadó-Margarit, X., Camarero, L. & Casamayor, E. O. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl. Acad. Sci. 115, 12229–12234 (2018).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Brągoszewska, E. & Pastuszka, J. S. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 34, 241–255. https://doi.org/10.1007/s10453-018-9510-1 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Ruíz-Gil, T. et al. Airborne bacterial communities of outdoor environments and their associated influencing factors. Environ. Int. 145, 106156 (2020).

    Article 

    Google Scholar 

  • 17.

    Titos, G. et al. Retrieval of aerosol properties from ceilometer and photometer measurements: Long-term evaluation with in situ data and statistical analysis at Montsec (southern Pyrenees). Atmos. Meas. Tech. 12, 3255–3267 (2019).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Camarero, L., Bacardit, M., de Diego, A. & Arana, G. Decadal trends in atmospheric deposition in a high elevation station: Effects of climate and pollution on the long-range flux of metals and trace elements over SW Europe. Atmos. Environ. 167, 542–552 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Triadó-Margarit, X., Caliz, J., Reche, I. & Casamayor, E. O. High similarity in bacterial bioaerosol compositions between the free troposphere and atmospheric depositions collected at high-elevation mountains. Atmos. Environ. 203, 79–86 (2019).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Els, N. et al. Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation. Aerobiologia 35, 671–701 (2019).

    Article 

    Google Scholar 

  • 21.

    Reche, I., D’Orta, G., Mladenov, N., Winget, D. M. & Suttle, C. A. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 12, 1154–1162 (2018).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Triadó-Margarit, X., Cáliz, J. & Casamayor, E. O. A long-term atmospheric baseline for intercontinental exchange of airborne pathogens. Environment International., ENVINT-D-21-01147R1 (2021).

  • 23.

    Barberán, A., Henley, J., Fierer, N. & Casamayor, E. O. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Sci. Total Environ. 47, 187–195 (2014).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Ontiveros, V. J., Capitán, J. A., Casamayor, E. O. & Alonso, D. The characteristic time of ecological communities. Ecology 102(2), e03247 (2021).

    Article 

    Google Scholar 

  • 25.

    Alonso, D., Pinyol-Gallemí, A., Alcoverro, T. & Arthur, R. Fish community reassembly after a coral mass mortality: Higher trophic groups are subject to increased rates of extinction. Ecol. Lett. 18, 451–461 (2015).

    Article 

    Google Scholar 

  • 26.

    Ontiveros, V. J., Capitán, J. A., Arthur, R., Casamayor, E. O. & Alonso, D. Colonization and extinction rates estimated from temporal dynamics of ecological communities: The island r package. Methods Ecol. Evol. 10, 1108–1117 (2019).

    Article 

    Google Scholar 

  • 27.

    OPCC-CTP. Le changement climatique dans les Pyrénées: impacts, vulnérabilités et adaptation. Bases de connaissances pour la future stratégie d’adaptation au changement climatique dans les Pyrénées. ISBN: 978-84-09-06268-3. https://www.opcc-ctp.org/sites/default/files/documentacion/opcc-informe-fr-print.pdf (2018).

  • 28.

    Chudobova, D. et al. Effects of stratospheric conditions on the viability, metabolism and proteome of prokaryotic cells. Atmosphere 6, 1290–1306 (2015).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Elbert, W., Taylor, P., Andreae, M. & Pöschl, U. Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 7, 4569–4588 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Bowers, R. M., McCubbin, I. B., Hallar, A. G. & Fierer, N. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 50, 41–49 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).

    Article 

    Google Scholar 

  • 32.

    Delort, A. M. et al. Microbial Ecology of Extreme Environments 215–245 (Springer, 2017).

    Book 

    Google Scholar 

  • 33.

    Catalan, J. et al. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25, 551–584 (2006).

    Google Scholar 

  • 34.

    Ruiz-González, C., Niño-García, J. P. & del Giorgio, P. A. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol. Lett. 18, 1198–1206 (2015).

    Article 

    Google Scholar 

  • 35.

    Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio 5, e00682 (2014).

    Article 

    Google Scholar 

  • 36.

    Hellberg, R. S. & Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit. Rev. Microbiol. 42, 548–572 (2016).

    Article 

    Google Scholar 

  • 37.

    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The influence of different morphological units on the turbulent flow characteristics in step-pool mountain streams

    Shared patterns in body size declines among crinoids during the Palaeozoic extinction events