in

Germination response to water availability in populations of Festuca pallescens along a Patagonian rainfall gradient based on hydrotime model parameters

  • 1.

    Zárate, M. A. & Tripaldi, A. The aeolian system of central Argentina. Aeolian Res. 3, 401–417 (2012).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Chapin III, F. S. Functional role of growth forms in ecosystem and global processes. In Scaling Physiology Process (ed. Ehleringer J. R. & Field C. B.) 287–312. (Elsevier Inc., 1993). https://doi.org/10.1016/C2009-0-03319-4.

    Google Scholar 

  • 3.

    Jump, A. S., Mátyás, C. & Peñuelas, J. The altitude-for-latitude disparity in the rangeretractions of woody species. Trends Ecol. Evol. (Amst.) 24, 694–701. https://doi.org/10.1016/j.tree.2009.06.007 (2009).

    Article 

    Google Scholar 

  • 4.

    Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C. G. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41, 293–319 (2010).

    Article 

    Google Scholar 

  • 5.

    O’Connor, T. Local extinction in perennial grasslands: A life-history approach. Am. Nat. 137, 753–773 (1991).

    Article 

    Google Scholar 

  • 6.

    Rotundo, J. L., Aguiar, M. R. & Benech-Arnold, R. Understanding erratic seedling emergence in perennial grasses using physiological models and field experimentation. Plant Ecol. 216, 143–156 (2015).

    Article 

    Google Scholar 

  • 7.

    Duncan, C., Schultz, N. L., Good, M. K., Lewandrowski, W. & Cook, S. The risk-takers and-avoiders: Germination sensitivity to water stress in an arid zone with unpredictable rainfall. AoB Plants. 11(6), plz066 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Pendleton, B. & Meyer, S. Habitat-correlated variation in blackbrush (Coleogyne ramosissima: Rosaceae) seed germination response. J. Arid Environ. 59, 229–243 (2004).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Chamorro, D. et al. Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. Plant Biol. 19(1), 23–31 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 10.

    Bewley, J. D. & Black, M. Seeds. In Seeds. (ed. Bewley, J. D. & Black, M.) 1–33. https://doi.org/10.1007/978-1-4899-1002-8. eBook ISBN978-1-4899-1002-8 (Springer, Boston, MA, 1994).

    Google Scholar 

  • 11.

    Bradford, K. J. Water relations in seed germination. In Seed Development and Germination (eds Kigel, J. & Galili, G.) 351–396 (Marcel Dekker Inc, 1995).

    Google Scholar 

  • 12.

    Batlla, D. & Benech-Arnold, R. L. The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci. Res. 16(1), 47–59 (2006).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Luna, B. & Chamorro, D. Germination sensitivity to water stress of eight Cistaceae species from the Western Mediterranean. Seed Sci. Res. 26(2), 101 (2016).

    Article 

    Google Scholar 

  • 14.

    Bradford, K. J. Threshold models applied to seed germination ecology. New Phytol. 165, 338–341 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Garcia-Huidobro, J., Monteith, J. & Squire, G. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.) I. Constant temperature. J. Exp. Bot. 33, 288–296 (1982).

    Article 

    Google Scholar 

  • 16.

    Bradford, K. J. A water relations analysis of seed germination rates. Plant Physiol. 94, 840–849 (1990).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Bradford, K. J. & Still, D. W. Applications of hydrotime analysis in seed testing. Seed Technol. 26(1), 75–85 (2004).

    Google Scholar 

  • 18.

    Gummerson, R. J. The effect of constant temperature and osmotic potentials on the germination of sugar beet. J. Exp. Bot. 37, 729–741 (1986).

    Article 

    Google Scholar 

  • 19.

    Bradford, K. J. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50, 248–260 (2002).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Batlla, D. & Agostinelli, A. M. Thermal regulation of secondary dormancy induction in Polygonum aviculare seeds: A quantitative analysis using the hydrotime model. Seed Sci. Res. 27(3), 231–242 (2017).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Farahinia, P., Sadat-Noori, S. A., Mortazavian, M. M., Soltani, E. & Foghi, B. Hydrotime model analysis of Trachyspermum ammi (L.) Sprague seed germination. J. Appl. Res. Med. Aroma. 5, 88–91 (2017).

    Google Scholar 

  • 22.

    Wang, R., Bai, Y. & Tanino, K. Germination of winterfat (Eurotia lanata (Pursh) Moq.) seeds at reduced water potentials: Testing assumptions of hydrothermal time model. Environ. Exp. Bot. 53(1), 49–683 (2005).

    Article 

    Google Scholar 

  • 23.

    Alvarado, V. & Bradford, K. J. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25(8), 1061–1069 (2002).

    Article 

    Google Scholar 

  • 24.

    Bakhshandeh, E. & Gholamhossieni, M. Modelling the effects of water stress and temperature on seed germination of radish and cantaloupe. J. Plant Growth Regul. 38(4), 1402–1411 (2019).

    Article 
    CAS 

    Google Scholar 

  • 25.

    Bakhshandeh, E. & Jamali, M. Population-based threshold models: A reliable tool for describing aged seeds response of rapeseed under salinity and water stress. Environ. Exp. Bot. 176, 104077 (2020).

    Article 
    CAS 

    Google Scholar 

  • 26.

    Leva, P. E. Variación regional de las características agroecológicas y genéticas de Bromus pictus y Poa ligularis en estepas patagónicas (Universidad Nacional de Buenos Aires, 2010).

    Google Scholar 

  • 27.

    Palazzesi, L., Barreda, V. & Prieto, A. Análisis evolutivo de la vegetación cenozoica en las provincias de Chubut y Santa Cruz (Argentina) con especial atención en las comunidades herbáceo-arbustivas. Revista del Museo Argentino de Ciencias Naturales nueva serie 5(2), 151–161 (2014).

    Google Scholar 

  • 28.

    León, R. J., Bran, D., Collantes, M., Paruelo, J. M. & Soriano, A. Grandes unidades de vegetación de la Patagonia extra andina. Ecol. Austral. 8, 125–144 (1998).

    Google Scholar 

  • 29.

    Villalba, R. et al. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim. Change. 59(1), 177–232 (2003).

    Article 

    Google Scholar 

  • 30.

    Godagnone, R., Bran, D. Inventario integrado de los recursos de la Provincia de Río Negro. (INTA, Argentina, Río Negro, 2009).

    Google Scholar 

  • 31.

    Soriano, A. La vegetación del Chubut. Revista Argentina de Agronomía. 17, 30–66 (1950).

    Google Scholar 

  • 32.

    Bertiller, M. B. & Coronato, F. Seed bank patterns of Festuca pallescens in semiarid Patagonia (Argentina): A possible limit to bunch reestablishment. Biodivers. Conserv. 3(1), 57–67 (1994).

    Article 

    Google Scholar 

  • 33.

    Defossé, G., Bertiller, M. & Robberecht, R. Germination characteristics of Festuca pallescens, a Patagonian bunchgrass with reclamation potential. Seed Sci. Technol. (Switzerland). 23(3), 715–723 (1995).

    Google Scholar 

  • 34.

    Bertiller, M. B., Elissalde, N. O., Rostagno, C. M. & Defossé, G. E. Environmental patterns and plant distribution along a precipitation gradient in western Patagonia. J. Arid Environ. 29, 85–97 (1993).

    Article 

    Google Scholar 

  • 35.

    Bran, D., Ayesa, J., López, C. Regiones ecológicas de Río Negro. Comunicación Técnica No 59. (INTA, EEA Bariloche, 2000).

    Google Scholar 

  • 36.

    Oliva, G. et al. Monitoring drylands: The MARAS system. J. Arid Environ. 161, 55–63 (2019).

    ADS 
    Article 

    Google Scholar 

  • 37.

    López, A. S., Marchelli, P., Batlla, D., López, D. R. & Arana, M. V. Seed responses to temperature indicate different germination strategies among Festuca pallescens populations from semi-arid environments in North Patagonia. Agric. For. Meteorol. 272, 81–90 (2019).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Gaitán, J. J. et al. Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecol. Indic. 34, 181–191 (2013).

    Article 

    Google Scholar 

  • 39.

    Moore, R. P. Tetrazolium tests for diagnosing causes for seed weaknesses and for predicting and understanding performance. In Proceedings of the Association of Official Seed Analysts. Association of Official Seed Analysts, vol. 56, 70–73. https://www.jstor.org/stable/23432057 (1966).

  • 40.

    Michel, B. E. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 72(1), 66–70 (1983).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Di Rienzo, J. A., et al. InfoStat versión 2020 & Centro de Transferencia InfoStat. FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar.

  • 42.

    Volis, S., Mendlinger, S. & Ward, D. Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia 133(2), 131–138 (2002).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Krichen, K., Mariem, H. B. & Chaieb, M. Ecophysiological requirements on seed germination of a Mediterranean perennial grass (Stipa tenacissima L.) under controlled temperatures and water stress. S. Afr. J. Bot. 94, 210–217 (2014).

    Article 

    Google Scholar 

  • 44.

    Petrů, M. & Tielbörger, K. Germination behaviour of annual plants under changing climatic conditions: Separating local and regional environmental effects. Oecologia 155(4), 717–728 (2008).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Cavallaro, V. et al. Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecol. Eng. 95, 557–566 (2016).

    Article 

    Google Scholar 

  • 46.

    Tognetti, P. M., Mazia, N. & Ibáñez, G. Seed local adaptation and seedling plasticity account for Gleditsia triacanthos tree invasion across biomes. Ann. Bot. 124(2), 307–318 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Allen, P. S., Meyer, S. E. & Khan, M. A. Hydrothermal time as a tool in comparative germination studies. In Seed biology: advances and applications. Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, 1999. (ed. Black, M., Bradford, J. K. & Vazquez-Ramos, J.) 401–410. https://doi.org/10.1079/9780851994048.0401 (2000).

  • 48.

    Hu, X. W., Fan, Y., Baskin, C. C., Baskin, J. M. & Wang, Y. R. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland. Am. J. Bot. 102(5), 649–660 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Ramírez-Tobías, H., Peña-Valdivia, C., Trejo, C., Aguirre, J. & Vaquera, H. Seed germination of Agave species as influenced by substrate water potential. Biol. Res. 47, 1–9 (2014).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Couso, L. Mecanismos de tolerancia a sequía y sus efectos sobre la habilidad competitiva de pastos de la estepa patagónica (Universidad Nacional de Buenos Aires, 2011).

    Google Scholar 

  • 51.

    López, D. R. Una aproximación Estructural-Funcional 1 del Modelo de Estados y Transiciones para el estudio de la dinámica de la vegetación en estepas de Patagonia norte (Universidad Nacional del Comahue, San Carlos de Bariloche, 2011).

    Google Scholar 

  • 52.

    Leva, P. E., Aguiar, M. R. & Premoli, A. C. Latitudinal variation of genecological traits in native grasses of Patagonian rangelands. Aust. J. Bot. 61(6), 475–485 (2013).

    Article 

    Google Scholar 

  • 53.

    López, D. R. & Cavallero, L. The role of nurse functional types in seedling recruitment dynamics of alternative states in rangelands. Acta Oecol. 79, 70–80 (2017).

    ADS 
    Article 

    Google Scholar 

  • 54.

    Coronato, F. R. & Bertiller, M. B. Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia. J. Arid Environ. 34(1), 1–9 (1996).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Coronato, F. R. & Bertiller, B. Climatic controls of soil moisture dynamics in an arid steppe of northern Patagonia, Argentina. Arid Land Res. Manag. 11, 277–288 (1997).

    Google Scholar 

  • 56.

    Heber, U., Santarius, K. A. Water stress during freezing. In Water and Plant Life. Ecological Studies (Analysis and Synthesis), vol. 19 (eds. Lange, O. L. et al.) 253–257. https://doi.org/10.1007/978-3-642-66429-8_16 (Springer, Berlin, Heidelberg, 1976).

  • 57.

    López, A. S., López, D. R., Caballe, G., Siffredi, G. L. & Marchelli, P. Local adaptation along a sharp rainfall gradient occurs in a native Patagonian grass, Festuca pallescens, regardless of extensive gene flow. Environ. Exp. Bot. 171, 103933 (2020).

    Article 
    CAS 

    Google Scholar 

  • 58.

    López, A. S., Azpilicueta, M. M., López, D. R., Siffredi, G. L. & Marchelli, P. Phylogenetic relationships and intraspecific diversity of a North Patagonian Fescue: Evidence of differentiation and interspecific introgression at peripheral populations. Folia Geobot. 53, 115–131. https://doi.org/10.1007/s12224-017-9304-1 (2018).

    Article 

    Google Scholar 

  • 59.

    Smith, S., Riley, E., Tiss, J. & Fendenhein, D. Geographical variation in predictive seedling emergence in a perennial desert grass. J. Ecol. 88, 139–149 (2000).

    Article 

    Google Scholar 

  • 60.

    Bohara, H. et al. Influence of poultry litter and biochar on soil water dynamics and nutrient leaching from a very fine sandy loam soil. Soil Tillage Res. 189, 44–51 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture

    Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought