Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).
Google Scholar
Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insectdecline in the anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. 118, e2023989118. https://doi.org/10.1073/pnas.2023989118 (2021).
Google Scholar
Harrison, T. & Winfree, R. Urban drivers of plant–pollinator interactions. Funct. Ecol. 29, 879–888 (2015).
Google Scholar
Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).
Google Scholar
McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129, 372–382 (2006).
Google Scholar
Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities dependson floral resource availability and bee functional traits. PLoS One 14, e025852. https://doi.org/10.1371/journal.pone.0225852 (2019).
Google Scholar
Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).
Google Scholar
Tonietto, R., Fant, J., Ascher, J., Ellis, K. & Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 103, 102–108 (2011).
Google Scholar
Threlfall, C. G. et al. The conservation value of urban green space habitats for Australian native bee communities. Biol. Conserv. 187, 240–248 (2015).
Google Scholar
Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).
Google Scholar
Bartomeus, I. et al. Historical changes in Northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. U. S. A. 110, 4656–4660 (2013).
Google Scholar
Willmer, P. Pollination and Floral Ecology (Princeton University Press, Princeton, 2011).
Google Scholar
Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees (Princeton University Press, Princeton, 2019).
Google Scholar
Robertson, C. Heterotropic bees. Ecology 6, 412–436 (1925).
Google Scholar
Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U. S. A. 100, 9383–9387 (2003).
Google Scholar
Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B Biol. Sci. 271, 2605–2611 (2004).
Google Scholar
Tylianakis, J. M. & Coux, C. Tipping points in ecological networks. Trends Plant Sci. 19, 281–283 (2014).
Google Scholar
Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along agradient of urbanisation. PLoS One 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).
Google Scholar
Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).
Google Scholar
Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170. https://doi.org/10.3389/fevo.2018.00170 (2018).
Google Scholar
Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84, 2628–2642 (2003).
Google Scholar
Cohen, H., Philpott, S. M., Liere, H., Lin, B. B. & Jha, S. The relationship between pollinator community and pollination services is mediated by floral abundance in urban landscapes. Urban Ecosyst. 24, 275–290 (2021).
Google Scholar
Menz, M. H. M. et al. Reconnecting plants and pollinators: Challenges in the restoration of pollination mutualisms. Trends Plant Sci. 16, 4–12 (2010).
Google Scholar
M’Gonigle, L. K., Williams, N. M., Lonsdorf, E. & Kremen, C. A tool for selecting plants when restoring habitat for pollinators. Conserv. Lett. 10, 105–111 (2017).
Google Scholar
Köppler, M.-R. & Hitchmough, J. D. Ecology good, aut-ecology better; improving the sustainability of designed plantings. J. Landsc. Archit. 10, 82–91 (2015).
Google Scholar
Tabassum, S. et al. Using ecological knowledge for landscaping with plants in cities. Ecol. Eng. 158, 106049. https://doi.org/10.1016/j.ecoleng.2020.106049 (2020).
Google Scholar
Campbell, B., Khachatryan, H. & Rihn, A. Pollinator-friendly plants, reasons for and barriers to purchase. Am. Soc. Hortic. Sci. 27, 831–839 (2017).
Khachatryan, H. et al. Visual attention to eco-labels predicts consumer preferences for pollinator friendly plants. Sustainability 9, 1743. https://doi.org/10.3390/su9101743 (2017).
Google Scholar
Hitchmough, J. & Woudstra, J. The ecology of exotic herbaceous perennials grown in managed, native grassy vegetation in urban landscapes. Landsc. Urban Plan. 45, 107–121 (1999).
Google Scholar
Ault, J. Breeding and development of new ornamental plants from North American native taxa. Acta Hortic. 624, 37–42 (2003).
Google Scholar
Comba, L. et al. Garden flowers: Insect visits and the floral reward of horticulturally-modified variants. Ann. Bot. 83, 73–86 (1999).
Google Scholar
Garbuzov, M. & Ratnieks, F. L. W. Using the British National Collection of asters to compare the attractiveness of 228 varieties to flower-visiting insects. Environ. Entomol. 44, 638–646 (2015).
Google Scholar
Erickson, E. et al. More than meets the eye? The role of annual ornamental flowers in supporting pollinators. Environ. Entomol. 49, 178–188 (2020).
Google Scholar
Garbuzov, M. & Ratnieks, F. L. W. W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 28, 364–374 (2014).
Google Scholar
Russo, L., DeBarros, N., Yang, S., Shea, K. & Mortensen, D. Supporting crop pollinators with floral resources: Network-based phenological matching. Ecol. Evol. 3, 3125–3140 (2013).
Google Scholar
Thompson, J. D. How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system?. Oecologia 126, 386–394 (2001).
Google Scholar
Tuell, J. K., Fiedler, A. K., Landis, D. & Isaacs, R. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern U.S. native plants for use in conservation programs. Environ. Entomol. 37, 707–718 (2008).
Google Scholar
Fowler, J. Specialist bees of the Northeast: Host plants and habitat conservation. Northeast. Nat. 23, 305–320 (2016).
Google Scholar
Jessica J. R. Catch the buzz-pollinator diversity, distribution, and phenology in Shenandoah National Park (Natural Resource Report. NPS/SHEN/NRR—2017/1441. National Park Service, 2017).
Savoy-Burke, G. Woodland Bee Diversity in the Mid-Atlantic. (Master’s Thesis, University of Delaware, Newark DE, 2017).
Fisher, R. M. Evolution and host specificity: Dichotomous invasion success of Psithyrus citrinus (Hymenoptera: Apidae), a bumblebee social parasite in colonies of its two hosts. Can. J. Zool. 63, 977–981 (1985).
Google Scholar
Packer, L., Genaro, J. & Sheffield, C. S. The bee genera of Eastern Canada. Can. J. Arthropod Identif. 3, 1–32 (2007).
Richardson, L. L., McFarland, K. P., Zahendra, S. & Hardy, S. Bumble bee (Bombus) distribution and diversity in Vermont, USA: A century of change. J. Insect Conserv. 23, 45–62 (2019).
Google Scholar
Domínguez-García, V. & Muñoz, M. A. Ranking species in mutualistic networks. Sci. Rep. 5, 8182. https://doi.org/10.1038/srep08182 (2015).
Google Scholar
Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807 (2008).
Google Scholar
Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: Analysingecological networks. R News 8(2), 8–11 (2008).
Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).
Google Scholar
Wright, G. A. & Schiestl, F. P. The evolution of floral scent: The influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct. Ecol. 23, 841–851 (2009).
Google Scholar
Corbet, S. et al. Native or Exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann. Bot. 87, 219–232 (2001).
Google Scholar
Campbell, D. R., Bischoff, M., Lord, J. M. & Robertson, A. W. Flower color influences insect visitation in alpine New Zealand. Ecology 91, 2638–2649 (2010).
Google Scholar
Harder, L. D. Morphology as a predictor of flower choice by bumble bees. Ecology 66, 198–210 (1985).
Google Scholar
Wilde, H. D., Gandhi, K. J. K. & Colson, G. State of the science and challenges of breeding landscape plants with ecological function. Hortic. Res. 2, 14069. https://doi.org/10.1038/hortres.2014.69 (2015).
Google Scholar
Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).
Google Scholar
Stearn, W. T. Nepeta mussinii and N. × Faassenii. J. R. Hortic. Soc. 75, 403–406 (1950).
Seitz, N., VanEngelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850 (2020).
Google Scholar
Kammerer, M., Tooker, J. F. & Grozinger, C. M. A long-term dataset on wild bee abundance in Mid-Atlantic United States. Sci. Data 7, 240. https://doi.org/10.1038/s41597-020-00577-0 (2020).
Google Scholar
Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).
Google Scholar
Salisbury, A. et al. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): Should we plant native or exotic species?. J. Appl. Ecol. 52, 1156–1164 (2015).
Google Scholar
Mach, B. M. & Potter, D. A. Quantifying bee assemblages and attractiveness of flowering woody landscape plants for urban pollinator conservation. PLoS One 13, e0208428. https://doi.org/10.1371/journal.pone.0208428 (2018).
Google Scholar
Sponsler, D. B., Shump, D., Richardson, R. T. & Grozinger, C. M. Characterizing the floral resources of a North American metropolis using a honey bee foraging assay. Ecosphere 11, e03102. https://doi.org/10.1002/ecs2.3102 (2020).
Google Scholar
Rollings, R. & Goulson, D. Quantifying the attractiveness of garden flowers for pollinators. J. Insect Conserv. 23, 803–817 (2019).
Google Scholar
Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).
Google Scholar
Vrdoljak, S. M., Samways, M. J. & Simaika, J. P. Pollinator conservation at the local scale: Flower density, diversity and community structure increase flower visiting insect activity to mixed floral stands. J. Insect Conserv. 20, 711–721 (2016).
Google Scholar
Burkle, L. A. & Alarcon, R. The future of plant–pollinator diversity: Understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).
Google Scholar
Roulston, T. H., Smith, S. A. & Brewster, A. L. A comparison of pan trap and intensive net sampling techniques for documenting bee (Hymenoptera: Apiformes) Fauna. J. Kansas Entomol. Soc. 80, 179–181 (2007).
Google Scholar
Baum, K. A. & Wallen, K. E. Potential bias in pan trapping as a function of floral abundance. J. Kansas Entomol. Soc. 84, 155–159 (2011).
Google Scholar
Robertson, A. W. & MacNair, M. R. The effects of floral display size on pollinator service to individual flowers of Myosotis and Mimulus. Oikos 72, 106–114 (1995).
Google Scholar
Bennett, A. B. & Lovell, S. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One 14, e0212034. https://doi.org/10.1371/journal.pone.0212034 (2019).
Google Scholar
Frankie, G. W. et al. Ecological patterns of bees and their host ornamental flowers in two Northern California cities. J. Kansas Entomol. Soc. 78, 227–246 (2005).
Google Scholar
Hamblin, A. L., Youngsteadt, E. & Frank, S. D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 21, 419–428 (2018).
Google Scholar
Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanization is driving pollinator diversity and pollination—a systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).
Google Scholar
Potted herbaceous perennial plants sold. Census of Agriculture – 2014 census of horticultural specialties (USDA-NASS, 2014).
Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).
Google Scholar
Herrera, C. M. Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering mediterranean shrub. Oikos 58, 277–288 (1990).
Google Scholar
Tuell, J. K. & Isaacs, R. Elevated pan traps to monitor bees in flowering crop canopies. Entomol. Exp. Appl. 131, 93–98 (2009).
Google Scholar
R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020)
Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.3. (2020).
Oksanen, J. et al. vegan: Community ecology package. R package version 2.5–7. (2020).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).
Google Scholar
Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).
Google Scholar
Source: Ecology - nature.com