in

Herbaceous perennial ornamental plants can support complex pollinator communities

  • 1.

    Allen-Wardell, G. et al. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12, 8–17 (1998).

    Article 

    Google Scholar 

  • 2.

    Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insectdecline in the anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. 118, e2023989118. https://doi.org/10.1073/pnas.2023989118 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Harrison, T. & Winfree, R. Urban drivers of plant–pollinator interactions. Funct. Ecol. 29, 879–888 (2015).

    Article 

    Google Scholar 

  • 4.

    Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129, 372–382 (2006).

    Article 

    Google Scholar 

  • 6.

    Wilson, C. J. & Jamieson, M. A. The effects of urbanization on bee communities dependson floral resource availability and bee functional traits. PLoS One 14, e025852. https://doi.org/10.1371/journal.pone.0225852 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).

    Article 

    Google Scholar 

  • 8.

    Tonietto, R., Fant, J., Ascher, J., Ellis, K. & Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 103, 102–108 (2011).

    Article 

    Google Scholar 

  • 9.

    Threlfall, C. G. et al. The conservation value of urban green space habitats for Australian native bee communities. Biol. Conserv. 187, 240–248 (2015).

    Article 

    Google Scholar 

  • 10.

    Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 11.

    Bartomeus, I. et al. Historical changes in Northeastern US bee pollinators related to shared ecological traits. Proc. Natl. Acad. Sci. U. S. A. 110, 4656–4660 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Willmer, P. Pollination and Floral Ecology (Princeton University Press, Princeton, 2011).

    Book 

    Google Scholar 

  • 13.

    Danforth, B. N., Minckley, R. L. & Neff, J. L. The Solitary Bees (Princeton University Press, Princeton, 2019).

    Book 

    Google Scholar 

  • 14.

    Robertson, C. Heterotropic bees. Ecology 6, 412–436 (1925).

    Article 

    Google Scholar 

  • 15.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl. Acad. Sci. U. S. A. 100, 9383–9387 (2003).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B Biol. Sci. 271, 2605–2611 (2004).

    Article 

    Google Scholar 

  • 17.

    Tylianakis, J. M. & Coux, C. Tipping points in ecological networks. Trends Plant Sci. 19, 281–283 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Geslin, B., Gauzens, B., Thébault, E. & Dajoz, I. Plant pollinator networks along agradient of urbanisation. PLoS One 8, e63421. https://doi.org/10.1371/journal.pone.0063421 (2013).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170. https://doi.org/10.3389/fevo.2018.00170 (2018).

    Article 

    Google Scholar 

  • 21.

    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84, 2628–2642 (2003).

    Article 

    Google Scholar 

  • 22.

    Cohen, H., Philpott, S. M., Liere, H., Lin, B. B. & Jha, S. The relationship between pollinator community and pollination services is mediated by floral abundance in urban landscapes. Urban Ecosyst. 24, 275–290 (2021).

    Article 

    Google Scholar 

  • 23.

    Menz, M. H. M. et al. Reconnecting plants and pollinators: Challenges in the restoration of pollination mutualisms. Trends Plant Sci. 16, 4–12 (2010).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 24.

    M’Gonigle, L. K., Williams, N. M., Lonsdorf, E. & Kremen, C. A tool for selecting plants when restoring habitat for pollinators. Conserv. Lett. 10, 105–111 (2017).

    Article 

    Google Scholar 

  • 25.

    Köppler, M.-R. & Hitchmough, J. D. Ecology good, aut-ecology better; improving the sustainability of designed plantings. J. Landsc. Archit. 10, 82–91 (2015).

    Article 

    Google Scholar 

  • 26.

    Tabassum, S. et al. Using ecological knowledge for landscaping with plants in cities. Ecol. Eng. 158, 106049. https://doi.org/10.1016/j.ecoleng.2020.106049 (2020).

    Article 

    Google Scholar 

  • 27.

    Campbell, B., Khachatryan, H. & Rihn, A. Pollinator-friendly plants, reasons for and barriers to purchase. Am. Soc. Hortic. Sci. 27, 831–839 (2017).

    Google Scholar 

  • 28.

    Khachatryan, H. et al. Visual attention to eco-labels predicts consumer preferences for pollinator friendly plants. Sustainability 9, 1743. https://doi.org/10.3390/su9101743 (2017).

    Article 

    Google Scholar 

  • 29.

    Hitchmough, J. & Woudstra, J. The ecology of exotic herbaceous perennials grown in managed, native grassy vegetation in urban landscapes. Landsc. Urban Plan. 45, 107–121 (1999).

    Article 

    Google Scholar 

  • 30.

    Ault, J. Breeding and development of new ornamental plants from North American native taxa. Acta Hortic. 624, 37–42 (2003).

    Article 

    Google Scholar 

  • 31.

    Comba, L. et al. Garden flowers: Insect visits and the floral reward of horticulturally-modified variants. Ann. Bot. 83, 73–86 (1999).

    Article 

    Google Scholar 

  • 32.

    Garbuzov, M. & Ratnieks, F. L. W. Using the British National Collection of asters to compare the attractiveness of 228 varieties to flower-visiting insects. Environ. Entomol. 44, 638–646 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Erickson, E. et al. More than meets the eye? The role of annual ornamental flowers in supporting pollinators. Environ. Entomol. 49, 178–188 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Garbuzov, M. & Ratnieks, F. L. W. W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Funct. Ecol. 28, 364–374 (2014).

    Article 

    Google Scholar 

  • 35.

    Russo, L., DeBarros, N., Yang, S., Shea, K. & Mortensen, D. Supporting crop pollinators with floral resources: Network-based phenological matching. Ecol. Evol. 3, 3125–3140 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Thompson, J. D. How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system?. Oecologia 126, 386–394 (2001).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Tuell, J. K., Fiedler, A. K., Landis, D. & Isaacs, R. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern U.S. native plants for use in conservation programs. Environ. Entomol. 37, 707–718 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 38.

    Fowler, J. Specialist bees of the Northeast: Host plants and habitat conservation. Northeast. Nat. 23, 305–320 (2016).

    Article 

    Google Scholar 

  • 39.

    Jessica J. R. Catch the buzz-pollinator diversity, distribution, and phenology in Shenandoah National Park (Natural Resource Report. NPS/SHEN/NRR—2017/1441. National Park Service, 2017).

  • 40.

    Savoy-Burke, G. Woodland Bee Diversity in the Mid-Atlantic. (Master’s Thesis, University of Delaware, Newark DE, 2017).

  • 41.

    Fisher, R. M. Evolution and host specificity: Dichotomous invasion success of Psithyrus citrinus (Hymenoptera: Apidae), a bumblebee social parasite in colonies of its two hosts. Can. J. Zool. 63, 977–981 (1985).

    Article 

    Google Scholar 

  • 42.

    Packer, L., Genaro, J. & Sheffield, C. S. The bee genera of Eastern Canada. Can. J. Arthropod Identif. 3, 1–32 (2007).

    Google Scholar 

  • 43.

    Richardson, L. L., McFarland, K. P., Zahendra, S. & Hardy, S. Bumble bee (Bombus) distribution and diversity in Vermont, USA: A century of change. J. Insect Conserv. 23, 45–62 (2019).

    Article 

    Google Scholar 

  • 44.

    Domínguez-García, V. & Muñoz, M. A. Ranking species in mutualistic networks. Sci. Rep. 5, 8182. https://doi.org/10.1038/srep08182 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Alarcón, R., Waser, N. M. & Ollerton, J. Year-to-year variation in the topology of a plant–pollinator interaction network. Oikos 117, 1796–1807 (2008).

    Article 

    Google Scholar 

  • 46.

    Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite package: Analysingecological networks. R News 8(2), 8–11 (2008).

    Google Scholar 

  • 47.

    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. 104, 19891–19896 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 

  • 48.

    Wright, G. A. & Schiestl, F. P. The evolution of floral scent: The influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct. Ecol. 23, 841–851 (2009).

    Article 

    Google Scholar 

  • 49.

    Corbet, S. et al. Native or Exotic? Double or single? Evaluating plants for pollinator-friendly gardens. Ann. Bot. 87, 219–232 (2001).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Campbell, D. R., Bischoff, M., Lord, J. M. & Robertson, A. W. Flower color influences insect visitation in alpine New Zealand. Ecology 91, 2638–2649 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Harder, L. D. Morphology as a predictor of flower choice by bumble bees. Ecology 66, 198–210 (1985).

    Article 

    Google Scholar 

  • 52.

    Wilde, H. D., Gandhi, K. J. K. & Colson, G. State of the science and challenges of breeding landscape plants with ecological function. Hortic. Res. 2, 14069. https://doi.org/10.1038/hortres.2014.69 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Stearn, W. T. Nepeta mussinii and N. × Faassenii. J. R. Hortic. Soc. 75, 403–406 (1950).

    Google Scholar 

  • 55.

    Seitz, N., VanEngelsdorp, D. & Leonhardt, S. D. Are native and non-native pollinator friendly plants equally valuable for native wild bee communities?. Ecol. Evol. 10, 12838–12850 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Kammerer, M., Tooker, J. F. & Grozinger, C. M. A long-term dataset on wild bee abundance in Mid-Atlantic United States. Sci. Data 7, 240. https://doi.org/10.1038/s41597-020-00577-0 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Vaudo, A. D., Tooker, J. F., Grozinger, C. M. & Patch, H. M. Bee nutrition and floral resource restoration. Curr. Opin. Insect Sci. 10, 133–141 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 58.

    Salisbury, A. et al. Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): Should we plant native or exotic species?. J. Appl. Ecol. 52, 1156–1164 (2015).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Mach, B. M. & Potter, D. A. Quantifying bee assemblages and attractiveness of flowering woody landscape plants for urban pollinator conservation. PLoS One 13, e0208428. https://doi.org/10.1371/journal.pone.0208428 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Sponsler, D. B., Shump, D., Richardson, R. T. & Grozinger, C. M. Characterizing the floral resources of a North American metropolis using a honey bee foraging assay. Ecosphere 11, e03102. https://doi.org/10.1002/ecs2.3102 (2020).

    Article 

    Google Scholar 

  • 61.

    Rollings, R. & Goulson, D. Quantifying the attractiveness of garden flowers for pollinators. J. Insect Conserv. 23, 803–817 (2019).

    Article 

    Google Scholar 

  • 62.

    Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014).

    Article 

    Google Scholar 

  • 63.

    Vrdoljak, S. M., Samways, M. J. & Simaika, J. P. Pollinator conservation at the local scale: Flower density, diversity and community structure increase flower visiting insect activity to mixed floral stands. J. Insect Conserv. 20, 711–721 (2016).

    Article 

    Google Scholar 

  • 64.

    Burkle, L. A. & Alarcon, R. The future of plant–pollinator diversity: Understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 65.

    Roulston, T. H., Smith, S. A. & Brewster, A. L. A comparison of pan trap and intensive net sampling techniques for documenting bee (Hymenoptera: Apiformes) Fauna. J. Kansas Entomol. Soc. 80, 179–181 (2007).

    Article 

    Google Scholar 

  • 66.

    Baum, K. A. & Wallen, K. E. Potential bias in pan trapping as a function of floral abundance. J. Kansas Entomol. Soc. 84, 155–159 (2011).

    Article 

    Google Scholar 

  • 67.

    Robertson, A. W. & MacNair, M. R. The effects of floral display size on pollinator service to individual flowers of Myosotis and Mimulus. Oikos 72, 106–114 (1995).

    Article 

    Google Scholar 

  • 68.

    Bennett, A. B. & Lovell, S. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One 14, e0212034. https://doi.org/10.1371/journal.pone.0212034 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Frankie, G. W. et al. Ecological patterns of bees and their host ornamental flowers in two Northern California cities. J. Kansas Entomol. Soc. 78, 227–246 (2005).

    Article 

    Google Scholar 

  • 70.

    Hamblin, A. L., Youngsteadt, E. & Frank, S. D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 21, 419–428 (2018).

    Article 

    Google Scholar 

  • 71.

    Wenzel, A., Grass, I., Belavadi, V. V. & Tscharntke, T. How urbanization is driving pollinator diversity and pollination—a systematic review. Biol. Conserv. 241, 108321. https://doi.org/10.1016/j.biocon.2019.108321 (2020).

    Article 

    Google Scholar 

  • 72.

    Potted herbaceous perennial plants sold. Census of Agriculture – 2014 census of horticultural specialties (USDA-NASS, 2014).

  • 73.

    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596 (2007).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Herrera, C. M. Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering mediterranean shrub. Oikos 58, 277–288 (1990).

    Article 

    Google Scholar 

  • 75.

    Tuell, J. K. & Isaacs, R. Elevated pan traps to monitor bees in flowering crop canopies. Entomol. Exp. Appl. 131, 93–98 (2009).

    Article 

    Google Scholar 

  • 76.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020)

  • 77.

    Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.5.3. (2020).

  • 78.

    Oksanen, J. et al. vegan: Community ecology package. R package version 2.5–7. (2020).

  • 79.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).

    MATH 
    Book 

    Google Scholar 

  • 80.

    Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Phenotypic plasticity of fungal traits in response to moisture and temperature

    Body size dependent dispersal influences stability in heterogeneous metacommunities