in

Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions

  • 1.

    Shewry, P. R. Wheat. J. Exp. Bot. 60, 1537–1553 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Shewry, P. R. & Hey, S. J. The contribution of wheat to human diet and health. Food Energy Secur. 4, 178–202 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Shiferaw, B. et al. Crops that feed the world 10: Past successes and future challenges to the role played by wheat in global food security. Food Secur. 5, 291–317 (2013).

    Article 

    Google Scholar 

  • 4.

    Pickett, J. A. et al. Delivering sustainable crop protection systems via the seed: Exploiting natural constitutive and inducible defence pathways. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20120281 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Dinant, S., Bonnemain, J. L., Girousse, C. & Kehr, J. Phloem sap intricacy and interplay with aphid feeding. C. R. Biol. 333, 504–515 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Rabbinge, R., Drees, E. M., van der Graaf, M., Verberne, F. C. M. & Wesselo, A. Damage effects of cereal aphids in wheat. Netherlands J. Plant Pathol. 87, 217–232 (1981).

    Article 

    Google Scholar 

  • 7.

    Leather, S. R., Walters, K. F. A. & Dixon, A. F. G. Factors determining the pest status of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: A study and review. Bull. Entomol. Res. 79, 345–360 (1989).

    Article 

    Google Scholar 

  • 8.

    Halbert, S. E., Connelly, J. B., Bishop, G. W. & Blackmer, J. L. Transmission of barley yellow dwarf virus by field collected aphids (Homoptera: Aphididae) and their relative importance in barley yellow dwarf epidemiology in southwestern Idaho. Ann. Appl. Biol. 121, 105–121 (1992).

    Article 

    Google Scholar 

  • 9.

    Chapin, J. W., Thomas, J. S., Gray, S. M., Smith, D. M. & Halbert, S. E. Seasonal abundance of aphids (Homoptera: Aphididae) in wheat and their role as barley yellow dwarf virus vectors in the South Carolina coastal plain. J. Econ. Entomol. 94, 410–421 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Tanguy, S. & Dedryver, C. Reduced BYDV–PAV transmission by the grain aphid in a Triticum monococcum line. Eur. J. Plant Pathol. 123, 281–289 (2009).

    Article 

    Google Scholar 

  • 11.

    Yu, W. et al. Variation in the transmission of barley yellow dwarf virus-PAV by different Sitobion avenae clones in China. J. Virol. Methods 194, 1–6 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Voss, T. S., Kieckhefer, R. W., Fuller, B. W., Mcleod, M. J. & Beck, D. A. Yield losses in maturing spring wheat caused by cereal aphids (Homoptera: Aphididae) under laboratory conditions. J. Econ. Entomol. 90, 1346–1350 (1997).

    Article 

    Google Scholar 

  • 13.

    Aradottir, G. I. & Crespo-Herrera, L. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: A review. Curr. Opin. Insect Sci. 45, 59–68 (2021).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Foster, S. P. et al. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides. Pest Manag. Sci. 70, 1249–1253 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Carvalho, F. P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9, 685–692 (2006).

    Article 

    Google Scholar 

  • 16.

    Pickett, J. A. Food security: Intensification of agriculture is essential, for which current tools must be defended and new sustainable technologies invented. Food Energy Secur. 2, 167–173 (2013).

    Article 

    Google Scholar 

  • 17.

    Bezemer, T. M., Jones, T. H. & Knight, K. J. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid aphidius matricariae. Oecologia 116, 128–135 (1998).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Van Der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B. 365, 2025–2034 (2010).

    Article 

    Google Scholar 

  • 19.

    Thaler, J. S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399, 686–688 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Agrawal, A. A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22, 103–109 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Rasmann, S., Chassin, E., Bilat, J., Glauser, G. & Reymond, P. Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. J. Exp. Bot. 66, 2527–2534 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Turley, N. E. & Johnson, M. T. J. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants. Oecologia 178, 747–759 (2015).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Züst, T. & Agrawal, A. A. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2, 1–9 (2016).

    Article 
    CAS 

    Google Scholar 

  • 24.

    Kogan, M. & Ortman, E. F. Antixenosis: A new term proposed to define painter’s ‘nonpreference’ modality of resistance. Bull. Entomol. Soc. Am. 24, 175–176 (1978).

    Google Scholar 

  • 25.

    Mumm, R. & Dicke, M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 88, 628–667 (2010).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Stout, M. J. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci. 20, 263–272 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Aradottir, G. I., Martin, J. L., Clark, S. J., Pickett, J. A. & Smart, L. E. Searching for wheat resistance to aphids and wheat bulb fly in the historical Watkins and Gediflux wheat collections. Ann. Appl. Biol. 170, 179–188 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Singh, B. et al. Characterization of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. Ann. Appl. Biol. https://doi.org/10.1111/aab.12616 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Radchenko, E. E. Resistance of Triticum species to cereal aphids. Czech J. Genet. Plant Breed. 47, 67–70 (2011).

    Article 

    Google Scholar 

  • 30.

    Sotherton, N. W. & Lee, G. Field assessments of resistance to the aphids Sitobion avenae and Metopolophium dirhodum in old and modern spring-sown wheats. Ann. Appl. Biol. 112, 239–248 (1988).

    Article 

    Google Scholar 

  • 31.

    Hu, X. S. et al. Resistance of wheat accessions to the English grain aphid Sitobion avenae. PLoS ONE 11, 1–17 (2016).

    Google Scholar 

  • 32.

    Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3, 429–441 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Greenslade, A. F. C. et al. Triticum monococcum lines with distinct metabolic phenotypes and phloem-based partial resistance to the bird cherry-oat aphid Rhopalosiphum padi. Ann. Appl. Biol. 168, 435–449 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Spiller, N. J. & Llewellyn, M. A comparison of the level of resistance in diploid Triticum monococcum and hexaploid Triticum aestivum wheat seedlings to the aphids Metopolophium dirhodum and Rhopalosiphum padi. Ann. Appl. Biol. 109, 173–177 (1986).

    Article 

    Google Scholar 

  • 35.

    Migui, S. M. & Lamb, R. J. Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Bull. Entomol. Res. 93, 323–333 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Migui, S. M. & Lamb, R. J. Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull. Entomol. Res. 94, 35–46 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    di Pietro, J. P., Caillaud, C. M., Chaubet, B., Pierre, J. S. & Trottet, M. Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca: Aphididae), among diploid wheat genotypes: Multivariate analysis of agronomic data. Plant Breed. 117, 407–413 (1998).

    Article 

    Google Scholar 

  • 38.

    Simon, A. L., Wellham, P. A. D., Aradottir, G. I. & Gange, A. C. Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae. Sci. Rep. 7, 1–11 (2017).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Rosenheim, J. A. Source-sink dynamics for a generalist insect predator in habitats with strong higher-order predation. Ecol. Monogr. 71, 93–116 (2001).

    Google Scholar 

  • 40.

    Pålsson, J. et al. Recruiting on the spot: A biodegradable formulation for lacewings to trigger biological control of aphids. Insects 10, 1–15 (2019).

    Article 

    Google Scholar 

  • 41.

    Mohamed, A. H., Lester, P. J. & Holtzer, T. O. Abundance and effects of predators and parasitoids on the Russian wheat aphid (Homoptera: Aphididae) under organic farming conditions in Colorado. Environ. Entomol. 29, 360–368 (2000).

    Article 

    Google Scholar 

  • 42.

    Schröder, M. L., Glinwood, R., Ingell, R. & Krüger, K. Visual cues and host-plant preference of the bird cherry-oat aphid, Rhopalosiphum padi (Hemiptera: Aphididae). Afr. Entomol. 22, 428–436 (2014).

    Article 

    Google Scholar 

  • 43.

    Weaver, D. K. et al. Cultivar preferences of ovipositing wheat stem sawflies as influenced by the amount of volatile attractant. J. Econ. Entomol. 102, 1009–1017 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Dong, L. et al. Characterization of volatile aroma compounds in different brewing barley cultivars. J. Sci. Food Agric. 95, 915–921 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Mattiolo, E., Licciardello, F., Lombardo, G. M., Muratore, G. & Anastasi, U. Volatile profiling of durum wheat kernels by HS–SPME/GC–MS. Eur. Food Res. Technol. 243, 147–155 (2017).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Schröder, M. L., Glinwood, R., Webster, B., Ignell, R. & Krüger, K. Olfactory responses of Rhopalosiphum padi to three maize, potato, and wheat cultivars and the selection of prospective crop border plants. Entomol. Exp. Appl. 157, 241–253 (2015).

    Article 
    CAS 

    Google Scholar 

  • 47.

    Evans, E. W. & Youssef, N. N. Numerical responses of aphid predators to varying prey density among utah alfalfa fields. J. Kansas Entomol. Soc. 65, 30–38 (1992).

    Google Scholar 

  • 48.

    Garratt, M. P. D., Wright, D. J. & Leather, S. R. The effects of organic and conventional fertilizers on cereal aphids and their natural enemies. Agric. For. Entomol. 12, 307–318 (2010).

    Google Scholar 

  • 49.

    Messina, F. J. & Sorenson, S. M. Effectiveness of lacewing larvae in reducing Russian wheat aphid populations on susceptible and resistant wheat. Biol. Control 21, 19–26 (2001).

    Article 

    Google Scholar 

  • 50.

    Farid, A., Johnson, J. B., Shafii, B. & Quisenberry, S. S. Tritrophic studies of Russian wheat aphid, a parasitoid, and resistant and susceptible wheat over three parasitoid generations. Biol. Control 12, 1–6 (1998).

    Article 

    Google Scholar 

  • 51.

    Ponder, K. L., Pritchard, J., Bale, J. S. & Harrington, R. Feeding behaviour of the aphid Rhopalosiphum padi (Hemiptera: Aphididae) on nitrogen and water-stressed barley (Hordeum vulgare) seedlings. Bull. Entomol. Res. 91, 125–130 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Cabrera, H. M., Argandoña, V. H., Zúñiga, G. E. & Corcuera, L. J. Effect of infestation by aphids on the water status of barley and insect development. Phytochemistry 40, 1083–1088 (1995).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Pons, X. & Tatchell, G. M. Drought stress and cereal aphid performance. Ann. Appl. Biol. 126, 19–31 (1995).

    Article 

    Google Scholar 

  • 54.

    Silva, P. S., Albuquerque, G. S., Tauber, C. A. & Tauber, M. J. Life history of a widespread Neotropical predator, Chrysopodes (Chrysopodes) lineafrons (Neuroptera: Chrysopidae). Biol. Control 41, 33–41 (2007).

    Article 

    Google Scholar 

  • 55.

    Malina, R., Praslička, J. & Schlarmannová, J. Developmental rates of the aphid Aphis pomi (Aphidoidea: Aphididae) and its parasitoid Aphidius ervi (Hymenoptera: Aphidiidae). Biologia 65, 899–902 (2010).

    Article 

    Google Scholar 

  • 56.

    Bensadia, F., Boudreault, S., Guay, J. F., Michaud, D. & Cloutier, C. Aphid clonal resistance to a parasitoid fails under heat stress. J. Insect Physiol. 52, 146–157 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Vorburger, C., Ganesanandamoorthy, P. & Kwiatkowski, M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol. Evol. 3, 706–713 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52–58 (2013).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma

    Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass