Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).
Google Scholar
Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).
Google Scholar
Barney, J. N., Tekiela, D. R., Dollete, E. S. & Tomasek, B. J. What is the “real” impact of invasive plant species?. Front. Ecol. Environ. 11, 322–329 (2013).
Google Scholar
O’Loughlin, L. S., Gooden, B., Barney, J. N. & Lindenmayer, D. B. Surrogacy in invasion research and management: Inferring “impact” from “invasiveness”. Front. Ecol. Environ. 17, 464–473 (2019).
Google Scholar
Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions https://doi.org/10.1007/s10530-020-02200-0 (2020).
Google Scholar
Foster, C. N. et al. How practitioners integrate decision triggers with existing metrics in conservation monitoring. J. Environ. Manage. 230, 94–101 (2019).
Google Scholar
Hulme, P. E. Weed risk assessment: A way forward or a waste of time?. J. Appl. Ecol. 49, 10–19 (2012).
Google Scholar
Meyerson, L. A., Simberloff, D., Boardman, L. & Lockwood, J. L. Toward, “rules” for studying biological invasions. Bull. Ecol. Soc. Am. 100, 1689–1699 (2019).
Google Scholar
Hulme, P. E. et al. Bias and error in understanding plant invasion impacts. Trends Ecol. Evol. 28, 212–218 (2013).
Google Scholar
Bradley, B. A. et al. Disentangling the abundance–impact relationship for invasive species. Proc. Natl. Acad. Sci. USA 116, 9919–9924 (2019).
Google Scholar
Panetta, F. D. & Gooden, B. Managing for biodiversity: Impact and action thresholds for invasive plants in natural ecosystems. NeoBiota 34, 53–66 (2017).
Google Scholar
Gooden, B., French, K., Turner, P. J. & Downey, P. O. Impact threshold for an alien plant invader, Lantana camara L., on native plant communities. Biol. Conserv. 142, 2631–2641 (2009).
Google Scholar
Bernard-Verdier, M. & Hulme, P. E. Alien plants can be associated with a decrease in local and regional native richness even when at low abundance. J. Ecol. 107, 1343–1354 (2019).
Google Scholar
Panetta, F. D., O’Loughlin, L. S. & Gooden, B. Identifying thresholds and ceilings in plant community recovery for optimal management of widespread weeds. NeoBiota 42, 1–18 (2019).
Google Scholar
Sofaer, H. R., Jarnevich, C. S. & Pearse, I. S. The relationship between invader abundance and impact. Ecosphere 9, e02415 (2018).
Google Scholar
Gooden, B. & French, K. Impacts of alien plant invasion on native plant communities are mediated by functional identity of resident species, not resource availability. Oikos 124, 298–306 (2015).
Google Scholar
Fried, G. & Panetta, F. D. Comparing an exotic shrub’s impact with that of a native life form analogue: Baccharis halimifolia vs Tamarix gallica in Mediterranean salt marsh communities. J. Veg. Sci. 27, 812–823 (2016).
Google Scholar
Chabrerie, O., Loinard, J., Perrin, S., Saguez, R. & Decocq, G. Impact of Prunus serotina invasion on understory functional diversity in a European temperate forest. Biol. Invasions 12, 1891–1907 (2010).
Google Scholar
O’Loughlin, L. S., Green, P. T. & Morgan, J. W. The rise and fall of Leptospermum laevigatum: Plant community change associated with the invasion and senescence of a range-expanding native species. Appl. Veg. Sci. 18, 323–331 (2015).
Google Scholar
Case, E. J., Harrison, S. & Cornell, H. V. Do high-impact invaders have the strongest negative effects on abundant and functionally similar resident species?. Funct. Ecol. 30, 1447–1453 (2016).
Google Scholar
González-Moreno, P., Diez, J. M., Ibáñez, I., Font, X. & Vilà, M. Plant invasions are context-dependent: Multiscale effects of climate, human activity and habitat. Divers. Distrib. 20, 720–731 (2014).
Google Scholar
Jauni, M., Gripenberg, S. & Ramula, S. Non-native plant species benefit from disturbance: A meta-analysis. Oikos https://doi.org/10.1111/oik.01416 (2014).
Google Scholar
Gill, R. A. et al. Niche opportunities for invasive annual plants in dryland ecosystems are controlled by disturbance, trophic interactions, and rainfall. Oecologia 187, 1–11 (2018).
Google Scholar
Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).
Google Scholar
Sokol, N. W., Kuebbing, S. E. & Bradford, M. A. Impacts of an invasive plant are fundamentally altered by a co-occurring forest disturbance. Ecology 98, 2133–2144 (2017).
Google Scholar
Iacarella, J. C., Mankiewicz, P. S. & Ricciardi, A. Negative competitive effects of invasive plants change with time since invasion. Ecosphere 6, 1–14 (2015).
Google Scholar
McAlpine, K. G., Lamoureaux, S. L. & Westbrooke, I. Ecological impacts of ground cover weeds in New Zealand lowland forests. N. Z. J. Ecol. 39, 50–60 (2015).
MacDougall, A. S. & Turkington, R. Are invasive species drivers or passengers of change in degraded ecosystems?. Ecology 86, 42–55 (2005).
Google Scholar
Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M. & Gemmell, N. J. Are invasive species the drivers of ecological change?. Trends Ecol. Evol. 20, 470–474 (2005).
Google Scholar
Kettenring, K. M. & Adams, C. R. Lessons learned from invasive plant control experiments: A systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979 (2011).
Google Scholar
D’Antonio, C. & Flory, S. L. Long-term dynamics and impacts of plant invasions. J. Ecol. 105, 1459–1461 (2017).
Google Scholar
Prober, S. M., Thiele, K. R. & Speijers, J. Competing drivers lead to non-linear native: Exotic relationships in endangered temperate grassy woodlands. Biol. Invasions 18, 3001–3014 (2016).
Google Scholar
Alvarez, M. E. & Cushman, J. H. Community-level consequences of a plant invasion: Effects on three habitats in Coastal California. Ecol. Appl. 12, 1434 (2002).
Google Scholar
Standish, R. J., Robertson, A. W. & Williams, P. A. The impact of an invasive weed Tradescantia fluminensis on native forest regeneration. J. Appl. Ecol. 38, 1253–1263 (2001).
Google Scholar
Zeeman, B. J., McDonnell, M. J., Kendal, D. & Morgan, J. W. Biotic homogenization in an increasingly urbanized temperate grassland ecosystem. J. Veg. Sci. 28, 550–561 (2017).
Google Scholar
Hejda, M. Do species of invaded communities differ in their vulnerability to being eliminated by the dominant alien plants?. Biol. Invasions 15, 1989–1999 (2013).
Google Scholar
Hejda, M., Štajerová, K., Pergl, J. & Pyšek, P. Impacts of dominant plant species on trait composition of communities: Comparison between the native and invaded ranges. Ecosphere 10, 20 (2019).
Google Scholar
Kuebbing, S. E. & Nuñez, M. A. Negative, neutral, and positive interactions among nonnative plants: Patterns, processes, and management implications. Glob. Change Biol. 21, 926–934 (2015).
Google Scholar
O’Loughlin, L. S. et al. Invasive shrub re-establishment following management has contrasting effects on biodiversity. Sci. Rep. 9, 4083 (2019).
Google Scholar
Grime, J. P. Competitive Exclusion in Herbaceous Vegetation. Nature 242, 344–347 (1973).
Google Scholar
Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).
Google Scholar
Barney, J. N., Smith, L. L. & Tekiela, D. R. Weed risk assessments can be useful, but have limitations. Invasions Plant Sci. Manage. 9, 84–85 (2016).
Google Scholar
Dugdale, T., McLaren, D. & Conran, J. The biology of Australian weeds 65. ‘Tradescantia fluminensis’ Vell. Plant Prot. Q. 30, 116 (2015).
Fowler, S. V. et al. Tradescantia fluminensis, an exotic weed affecting native forest regeneration in New Zealand: Ecological surveys, safety tests and releases of four biocontrol agents from Brazil. Biol. Control 64, 323–329 (2013).
Google Scholar
Morin L. Information package to support application to release the white smut-like fungus Kordyana brasiliensis for the biological control of wandering trad (Tradescantia fluminensis) in Australia. (CSIRO, Australia, 2017).
CABI. Tradescantia fluminensis (wandering Jew). In Invasive Species Compendium (2019).
Butcher, E. R. & Kelly, D. Physical and anthropogenic factors predict distribution of the invasive weed Tradescantia fluminensis. Austral. Ecol. 36, 621–627 (2011).
Standish, R. J. et al. Invasion by a perennial herb increases decomposition rate and alters nutrient availability in warm temperate lowland forest remnants. Biol. Invasions. 6, 71–81 (2004).
Google Scholar
Toft, R. J., Harris, R. J. & Williams, P. A. Impacts of the weed Tradescantia fluminensis on insect communities in fragmented forests in New Zealand. Biol. Conserv. 102, 31–46 (2001).
Google Scholar
Bureau of Meteorology. Climate Data Online. http://www.bom.gov.au/climate/data/index.shtm (2020).
Maisey, A. C., Nimmo, D. G. & Bennett, A. F. Habitat selection by the Superb Lyrebird (Menura novaehollandiae), an iconic ecosystem engineer in forests of south-eastern Australia. Austral. Ecol. 44, 503–513 (2019).
Google Scholar
Incoll, B., Maisey, A. & Adam, J. T. years of forest restoration in the Upwey Corridor, Dandenong Ranges, Victoria. Ecol. Manage. Restor. 19, 189–197 (2018).
Google Scholar
Gooden, B. & French, K. Non-interactive effects of plant invasion and landscape modification on native communities. Divers. Distrib. 20, 626–639 (2014).
Google Scholar
Mason, T. J. & French, K. Management regimes for a plant invader differentially impact resident communities. Biol. Conserv. 136, 246–259 (2007).
Google Scholar
Sullivan, J. J., Timmins, S. M. & Williams, P. A. Movement of exotic plants into coastal native forests from gardens in northern New Zealand. N. Z. J. Ecol. 29, 1–10 (2005).
R Core Team. R: A Language and Environment for Statistical Computing. (2019).
Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
Google Scholar
Source: Ecology - nature.com