in

Identifying thresholds in the impacts of an invasive groundcover on native vegetation

  • 1.

    Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).

    ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Barney, J. N., Tekiela, D. R., Dollete, E. S. & Tomasek, B. J. What is the “real” impact of invasive plant species?. Front. Ecol. Environ. 11, 322–329 (2013).

    Article 

    Google Scholar 

  • 4.

    O’Loughlin, L. S., Gooden, B., Barney, J. N. & Lindenmayer, D. B. Surrogacy in invasion research and management: Inferring “impact” from “invasiveness”. Front. Ecol. Environ. 17, 464–473 (2019).

    Article 

    Google Scholar 

  • 5.

    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions https://doi.org/10.1007/s10530-020-02200-0 (2020).

    Article 

    Google Scholar 

  • 6.

    Foster, C. N. et al. How practitioners integrate decision triggers with existing metrics in conservation monitoring. J. Environ. Manage. 230, 94–101 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 7.

    Hulme, P. E. Weed risk assessment: A way forward or a waste of time?. J. Appl. Ecol. 49, 10–19 (2012).

    Article 

    Google Scholar 

  • 8.

    Meyerson, L. A., Simberloff, D., Boardman, L. & Lockwood, J. L. Toward, “rules” for studying biological invasions. Bull. Ecol. Soc. Am. 100, 1689–1699 (2019).

    Article 

    Google Scholar 

  • 9.

    Hulme, P. E. et al. Bias and error in understanding plant invasion impacts. Trends Ecol. Evol. 28, 212–218 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 10.

    Bradley, B. A. et al. Disentangling the abundance–impact relationship for invasive species. Proc. Natl. Acad. Sci. USA 116, 9919–9924 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Panetta, F. D. & Gooden, B. Managing for biodiversity: Impact and action thresholds for invasive plants in natural ecosystems. NeoBiota 34, 53–66 (2017).

    Article 

    Google Scholar 

  • 12.

    Gooden, B., French, K., Turner, P. J. & Downey, P. O. Impact threshold for an alien plant invader, Lantana camara L., on native plant communities. Biol. Conserv. 142, 2631–2641 (2009).

    Article 

    Google Scholar 

  • 13.

    Bernard-Verdier, M. & Hulme, P. E. Alien plants can be associated with a decrease in local and regional native richness even when at low abundance. J. Ecol. 107, 1343–1354 (2019).

    Article 

    Google Scholar 

  • 14.

    Panetta, F. D., O’Loughlin, L. S. & Gooden, B. Identifying thresholds and ceilings in plant community recovery for optimal management of widespread weeds. NeoBiota 42, 1–18 (2019).

    Article 

    Google Scholar 

  • 15.

    Sofaer, H. R., Jarnevich, C. S. & Pearse, I. S. The relationship between invader abundance and impact. Ecosphere 9, e02415 (2018).

    Article 

    Google Scholar 

  • 16.

    Gooden, B. & French, K. Impacts of alien plant invasion on native plant communities are mediated by functional identity of resident species, not resource availability. Oikos 124, 298–306 (2015).

    Article 

    Google Scholar 

  • 17.

    Fried, G. & Panetta, F. D. Comparing an exotic shrub’s impact with that of a native life form analogue: Baccharis halimifolia vs Tamarix gallica in Mediterranean salt marsh communities. J. Veg. Sci. 27, 812–823 (2016).

    Article 

    Google Scholar 

  • 18.

    Chabrerie, O., Loinard, J., Perrin, S., Saguez, R. & Decocq, G. Impact of Prunus serotina invasion on understory functional diversity in a European temperate forest. Biol. Invasions 12, 1891–1907 (2010).

    Article 

    Google Scholar 

  • 19.

    O’Loughlin, L. S., Green, P. T. & Morgan, J. W. The rise and fall of Leptospermum laevigatum: Plant community change associated with the invasion and senescence of a range-expanding native species. Appl. Veg. Sci. 18, 323–331 (2015).

    Article 

    Google Scholar 

  • 20.

    Case, E. J., Harrison, S. & Cornell, H. V. Do high-impact invaders have the strongest negative effects on abundant and functionally similar resident species?. Funct. Ecol. 30, 1447–1453 (2016).

    Article 

    Google Scholar 

  • 21.

    González-Moreno, P., Diez, J. M., Ibáñez, I., Font, X. & Vilà, M. Plant invasions are context-dependent: Multiscale effects of climate, human activity and habitat. Divers. Distrib. 20, 720–731 (2014).

    Article 

    Google Scholar 

  • 22.

    Jauni, M., Gripenberg, S. & Ramula, S. Non-native plant species benefit from disturbance: A meta-analysis. Oikos https://doi.org/10.1111/oik.01416 (2014).

    Article 

    Google Scholar 

  • 23.

    Gill, R. A. et al. Niche opportunities for invasive annual plants in dryland ecosystems are controlled by disturbance, trophic interactions, and rainfall. Oecologia 187, 1–11 (2018).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Sokol, N. W., Kuebbing, S. E. & Bradford, M. A. Impacts of an invasive plant are fundamentally altered by a co-occurring forest disturbance. Ecology 98, 2133–2144 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Iacarella, J. C., Mankiewicz, P. S. & Ricciardi, A. Negative competitive effects of invasive plants change with time since invasion. Ecosphere 6, 1–14 (2015).

    Article 

    Google Scholar 

  • 27.

    McAlpine, K. G., Lamoureaux, S. L. & Westbrooke, I. Ecological impacts of ground cover weeds in New Zealand lowland forests. N. Z. J. Ecol. 39, 50–60 (2015).

    Google Scholar 

  • 28.

    MacDougall, A. S. & Turkington, R. Are invasive species drivers or passengers of change in degraded ecosystems?. Ecology 86, 42–55 (2005).

    Article 

    Google Scholar 

  • 29.

    Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M. & Gemmell, N. J. Are invasive species the drivers of ecological change?. Trends Ecol. Evol. 20, 470–474 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Kettenring, K. M. & Adams, C. R. Lessons learned from invasive plant control experiments: A systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979 (2011).

    Article 

    Google Scholar 

  • 31.

    D’Antonio, C. & Flory, S. L. Long-term dynamics and impacts of plant invasions. J. Ecol. 105, 1459–1461 (2017).

    Article 

    Google Scholar 

  • 32.

    Prober, S. M., Thiele, K. R. & Speijers, J. Competing drivers lead to non-linear native: Exotic relationships in endangered temperate grassy woodlands. Biol. Invasions 18, 3001–3014 (2016).

    Article 

    Google Scholar 

  • 33.

    Alvarez, M. E. & Cushman, J. H. Community-level consequences of a plant invasion: Effects on three habitats in Coastal California. Ecol. Appl. 12, 1434 (2002).

    Article 

    Google Scholar 

  • 34.

    Standish, R. J., Robertson, A. W. & Williams, P. A. The impact of an invasive weed Tradescantia fluminensis on native forest regeneration. J. Appl. Ecol. 38, 1253–1263 (2001).

    Article 

    Google Scholar 

  • 35.

    Zeeman, B. J., McDonnell, M. J., Kendal, D. & Morgan, J. W. Biotic homogenization in an increasingly urbanized temperate grassland ecosystem. J. Veg. Sci. 28, 550–561 (2017).

    Article 

    Google Scholar 

  • 36.

    Hejda, M. Do species of invaded communities differ in their vulnerability to being eliminated by the dominant alien plants?. Biol. Invasions 15, 1989–1999 (2013).

    Article 

    Google Scholar 

  • 37.

    Hejda, M., Štajerová, K., Pergl, J. & Pyšek, P. Impacts of dominant plant species on trait composition of communities: Comparison between the native and invaded ranges. Ecosphere 10, 20 (2019).

    Article 

    Google Scholar 

  • 38.

    Kuebbing, S. E. & Nuñez, M. A. Negative, neutral, and positive interactions among nonnative plants: Patterns, processes, and management implications. Glob. Change Biol. 21, 926–934 (2015).

    ADS 
    Article 

    Google Scholar 

  • 39.

    O’Loughlin, L. S. et al. Invasive shrub re-establishment following management has contrasting effects on biodiversity. Sci. Rep. 9, 4083 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 40.

    Grime, J. P. Competitive Exclusion in Herbaceous Vegetation. Nature 242, 344–347 (1973).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Barney, J. N., Smith, L. L. & Tekiela, D. R. Weed risk assessments can be useful, but have limitations. Invasions Plant Sci. Manage. 9, 84–85 (2016).

    Article 

    Google Scholar 

  • 43.

    Dugdale, T., McLaren, D. & Conran, J. The biology of Australian weeds 65. ‘Tradescantia fluminensis’ Vell. Plant Prot. Q. 30, 116 (2015).

    Google Scholar 

  • 44.

    Fowler, S. V. et al. Tradescantia fluminensis, an exotic weed affecting native forest regeneration in New Zealand: Ecological surveys, safety tests and releases of four biocontrol agents from Brazil. Biol. Control 64, 323–329 (2013).

    Article 

    Google Scholar 

  • 45.

    Morin L. Information package to support application to release the white smut-like fungus Kordyana brasiliensis for the biological control of wandering trad (Tradescantia fluminensis) in Australia. (CSIRO, Australia, 2017).

  • 46.

    CABI. Tradescantia fluminensis (wandering Jew). In Invasive Species Compendium (2019).

  • 47.

    Butcher, E. R. & Kelly, D. Physical and anthropogenic factors predict distribution of the invasive weed Tradescantia fluminensis. Austral. Ecol. 36, 621–627 (2011).

    Google Scholar 

  • 48.

    Standish, R. J. et al. Invasion by a perennial herb increases decomposition rate and alters nutrient availability in warm temperate lowland forest remnants. Biol. Invasions. 6, 71–81 (2004).

    Article 

    Google Scholar 

  • 49.

    Toft, R. J., Harris, R. J. & Williams, P. A. Impacts of the weed Tradescantia fluminensis on insect communities in fragmented forests in New Zealand. Biol. Conserv. 102, 31–46 (2001).

    Article 

    Google Scholar 

  • 50.

    Bureau of Meteorology. Climate Data Online. http://www.bom.gov.au/climate/data/index.shtm (2020).

  • 51.

    Maisey, A. C., Nimmo, D. G. & Bennett, A. F. Habitat selection by the Superb Lyrebird (Menura novaehollandiae), an iconic ecosystem engineer in forests of south-eastern Australia. Austral. Ecol. 44, 503–513 (2019).

    Article 

    Google Scholar 

  • 52.

    Incoll, B., Maisey, A. & Adam, J. T. years of forest restoration in the Upwey Corridor, Dandenong Ranges, Victoria. Ecol. Manage. Restor. 19, 189–197 (2018).

    Article 

    Google Scholar 

  • 53.

    Gooden, B. & French, K. Non-interactive effects of plant invasion and landscape modification on native communities. Divers. Distrib. 20, 626–639 (2014).

    Article 

    Google Scholar 

  • 54.

    Mason, T. J. & French, K. Management regimes for a plant invader differentially impact resident communities. Biol. Conserv. 136, 246–259 (2007).

    Article 

    Google Scholar 

  • 55.

    Sullivan, J. J., Timmins, S. M. & Williams, P. A. Movement of exotic plants into coastal native forests from gardens in northern New Zealand. N. Z. J. Ecol. 29, 1–10 (2005).

    Google Scholar 

  • 56.

    R Core Team. R: A Language and Environment for Statistical Computing. (2019).

  • 57.

    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    MATH 
    Book 

    Google Scholar 


  • Source: Ecology - nature.com

    Improving pesticide-use data for the EU

    Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs