Campbell, W. B. The Cellulose-Water Relationship in Papermaking (Dept Of Interior, Forest Service Bulletin, 1933).
Przybysz, K. & Wandelt, P. Pulp quality control system Part 3 Fiber strength. Przeglad Pap. 61, 283–286 (2005).
Horn, R. A. Morphology of Wood Pulp Fiber from Softwoods and Influence on Paper Strength. Research Paper FPL-242 (U.S. Department of Agriculture, 1974).
Joutsimo, O., Wathén, R. & Tamminen, T. Effects of fiber deformations on pulp sheet properties and fiber strength. Pap. Puu-Pap. Tim. 87, 392–397 (2005).
Google Scholar
Kerekes, R. & Senger, J. J. Characterizing refining action in low-consistency refiners by forces on fibres. J. Pulp Pap. Sci. 32, 1–8 (2006).
Google Scholar
Karlström, A. & Eriksson, K. Fiber energy efficiency. Part 2: Forces acting on the refiner bars. Nord. Pulp Pap. Res. J. 06, 332–343 (2014).
Google Scholar
Zeng, X., Retulainen, E., Heinemann, S. & Fu, S. Fibre deformations induced by different mechanical treatment and their effect on zero-span strength. Nord. Pulp Paper Res. J. 27, 335–342 (2012).
Google Scholar
Joutsimo, O. & Asikainen, S. Effect of fiber wall pore structure on pulp sheet density of softwood kraft pulp fibers. BioRes. 8, 2719–2737 (2013).
Google Scholar
Tingjie, C. et al. Effect of refining on physical properties and paper strength of pinus massoniana and china fir cellulose fibers. BioRes. 11, 7839–7848 (2016).
Laine, C., Wang, X. S., Tenkanen, M. & Varhimo, A. Changes in the fiber wall during refining of bleached pine kraft pulp. Holzforschung 58, 233–240 (2004).
Google Scholar
Gharehkhani, S. et al. Basic effects of pulp refining on fiber properties: A review. Carbohydr. Polym. 115, 785–803 (2015).
Google Scholar
El-Sharkawy, K., Haavisto, S., Koskenhely, K. & Paulapuro, H. Effect of fiber flocculation and filling design on refiner loadability and refining characteristics. BioRes. 3, 403–424 (2008).
Google Scholar
Kerekes, R. Energy and forces in refining. J. Pulp Pap. Sci. 36, 10–15 (2010).
Google Scholar
O’Rourke, D. Nongovernmental organization strategies to influence global production and consumption. J. Ind. Ecol. 9, 115–128 (2005).
Google Scholar
Holik, H. Handbook of Paper and Board 2nd edn. (Willey-VCH, 2013).
Google Scholar
Przybysz, K. Fibrillation of cellulose fibers. Przemysl Chem. 82, 1149–1151 (2003).
Google Scholar
Ferritsius, R. et al. Development of fibre properties in full scale HC and LC refining. in 2016 International Mechanical Pulping Conference, Jacksonville, 26–28 (2016).
Kane, M. W. Beating, fiber length distributions and tensile strength-part. Pulp Pap. Canada 60, 308–359 (1959).
Hartman, R. R. Mechanical Treatment of Pulps for Property Development. PhD Dissertation, Institute of Paper Science and Technology (1984).
Constable, M. The paper shredder: Trails of law. Law Text Culture 23, 276–293 (2019).
Japanese Paper Recycle, Paper Recycling Promotion Center http://www.prpc.or.jp/document/publications/japan/.
Paper Recycling Facts, University of Southern Indiana https://www.usi.edu/recycle/paper-recycling-facts/.
Chauhan, V. S., Kumar, N., Kumar, M. & Thapar, S. K. Weighted average fiber length: An important parameter in papermaking. Taiwan Lin Ye Ke Xue 28, 51–65 (2013).
Wangaard, F. F. & Woodson, G. E. Fiber length–fiber strength, interrelationship for slash pine and its effect on pulp–sheet properties. Wood Sci. 5, 235–240 (1973).
Perng, Y. S., Wang, I. C., Cheng, Y. L. & Chen, Y. C. Effects of fiber morphological characteristics and refining on handsheet properties. Taiwan Lin Ye Ke Xue 24, 127–139 (2009).
Choi, E. Y. & Cho, B. U. Effect of beating and water impregnation on fiber swelling and paper properties. J. Korea TAPPI 45, 88–95 (2013).
Google Scholar
Pruden, B. The effect of fines on paper properties. Pap. Technol. 46, 19–26 (2005).
Kibblewhite, R. P. Interrelations between pulp refining treatments, fibre and pulp fines quality, and pulp freeness. Pap. Puu-Pap. Tim. 57, 519–526 (1975).
Olejnik, K. Effect of the free swelling of refined cellulose fibres on the mechanical properties of paper. Fibres Text. East. Eur. 20, 113–116 (2012).
Google Scholar
Sundblad, S. Predictions of Pulp and Paper Properties Based on Fiber Morphology. Master Thesis in Macromolecular Materials, KTH Vetenskap Och Konst, Stockholm, Sweden (2015).
Retulainen, E. The Role of Fibre Bonding in Paper Properties (National Technical Information Service, Espoo, 1997).
Hietanen, S. E. K. Fundamental aspects of the refining process. Pap. Puu-Pap. Tim. 72, 158–170 (1990).
Google Scholar
Wang, X., Maloney, T. & Paulapuro, H. Fibre fibrillation and its impact on sheet properties. Pap. Puu-Pap. Tim. 89, 148–151 (2007).
Google Scholar
Lindqvist, H. et al. The effect of fibre properties, fines content and surfactant addition on dewatering, wet and dry web properties. Nord. Pulp Pap. Res. J. 27, 104–111 (2012).
Google Scholar
Kekäläinen, K., Illikainen, M. & Niinimäki, J. Morphological changes in never-dried kraft fibers under mechanical shearing. Cellulose 19, 879–889 (2012).
Google Scholar
Heymer, J. O., Olson, J. A. & Kerekes, R. The role of multiple loading cycles on pulp in refiners. Nord. Pulp Pap. Res. 26, 283–287 (2018).
Google Scholar
Vishtal, A. & Retulainen, E. Boosting the extensibility potential of fibre networks: A review. BioRes. 9, 7933–7983 (2014).
Google Scholar
Cheng, Q., Wang, J., McNeel, J. & Jacobson, P. Water retention value measurements of cellulosic materials using a centrifuge technique. BioRes. 5, 1945–1954 (2010).
Google Scholar
Scallan, A. M. & Carles, J. The correlation of the water retention value with the fibre saturation point. Sven Papperstidning 75, 699–703 (1972).
Google Scholar
Bäckström, M., Kolar, M. & Htun, M. Characterisation of fines from unbleached kraft pulps and their impact on sheet properties. Holzforschung 62, 546–552 (2008).
Google Scholar
Ferreira, P. J., Matos, S. & Figueiredo, M. M. Size characterization of fibres and fines in hardwood kraft pulps. Part. Part. Syst. Charact. 16, 20–24 (1999).
Google Scholar
Ciesielski, K. & Olejnik, K. Application of neural networks for estimation of paper properties based on refined pulp properties. Fibres Text. East. Eur. 5, 126–132 (2014).
Paavilainen, L. Importance of particle size: fibre length and fines: for the characterization of softwood kraft pulp. Pap. Puu-Pap. Tim. 72, 516–526 (1990).
Google Scholar
Hai, L. V., Park, H. J. & Seo, Y. B. Effect of PFI mill and Valley beater refining on cellulose degree of polymerization, alpha cellulose contents, and crystallinity of wood and cotton fibers. J. Korea TAPPI 45, 27–33 (2013).
Google Scholar
Wathén, R. Studies on Fiber Strength and its Effect on Paper Properties. Dissertation for the degree of Doctor of Science in Technology, KCL Communications 11, Helsinki University of Technology (2006).
Motamedian, H. R., Halilovic, A. E. & Kulachenko, A. Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26, 4099–4124 (2019).
Google Scholar
Nordström, B. & Hermansson, L. Effect of fiber length on formation and strength efficiency in twin-wire roll forming. Nord. Pulp Pap. Res. 32, 119–125 (2017).
Google Scholar
Biermann, C. J. Refining and Pulp Characterization. Handbook of Pulping and Papermaking 138–139 (Academic Press, 1996).
Jang, H. F. & Seth, R. S. Determining the mean values for fibre physical properties. Nord. Pulp Pap. Res. J. 19, 372–378 (2004).
Google Scholar
Bajpai, P. The Pulp and Paper Industry. Pulp and Paper Industry: Emerging Waste Water Treatment Technologies 23–25 (Elesiver, 2017).
Fišerová, M., Gigac, J. & Balberčák, J. Relationship between fibre characteristics and tensile strength of hardwood and softwood kraft pulps. Cell. Chem. Technol. 44, 249–253 (2010).
Johansson, A. Correlations Between Fibre Properties and Paper Properties. Master Thesis in Pulp Technology, KTH Vetenskap Och Konst (2011).
Sjöberg, J. & Höglund, H. Refining system for sack paper pulp: Part 1 HC refining under pressurised conditions and subsequent LC refining. Nord. Pulp Pap. Res. 20, 320–328 (2005).
Google Scholar
Larsson, P. T., Lindström, T., Carlsson, L. A. & Fellers, C. Fiber length and bonding effects on tensile strength and toughness of kraft paper. J. Mater. Sci. 53, 3006–3015 (2018).
Google Scholar
Watson, A. J. & Dadswell, H. E. Influence of fibre morphology on paper properties. Part 1: fibre length. Appita J. 14, 168–178 (1961).
Google Scholar
Horn, R. A. Morphology of Pulp Fiber from Hardwoods and Influence on Paper Strength. USDA Forest Service, Research Paper FPL 312, Forest Products Laboratory, 1–10 (1978).
Seth, R. S. The measurement and significance of fines. Pulp Pap. Canada 104, 41–44 (2003).
Google Scholar
Odabas, N., Henniges, U., Potthast, A. & Rosenau, T. Cellulosic fines: properties and effects. Prog. Mater. Sci. 83, 574–594 (2016).
Google Scholar
Sirviö, J. & Nurminen, I. Systematic changes in paper properties caused by fines. Pulp Pap. Canada 105, 39–42 (2004).
Bossu, J. et al. Fine cellulosic materials produced from chemical pulp: The combined effect of morphology and rate of addition on paper properties. Nanomaterials 9, 321 (2019).
Google Scholar
Niskanen, K. (ed.) Paper Physics, Papermaking Science and Technology, Book 16 (Finnish Paper Engineers Association and TAPPI, 1998).
Maloney, T. C., Todorovic, A. & Paulapuro, H. The effect of fiber swelling on press dewatering. Nord. Pulp Pap. Res. 13, 285–291 (1998).
Google Scholar
Fischer, W. J. et al. Pulp fines-characterization, sheet formation, and comparison to microfibrillated cellulose. Polymers 9, 366–378 (2017).
Google Scholar
Park, J. Y., Melani, L., Lee, H. & Kim, H. J. Effect of pulp fibers on the surface softness component of hygiene paper. Holzforschung 74, 497–504 (2020).
Google Scholar
Jonsson, D. K. et al. Energy at your service: Highlighting energy usage systems in the context of energy efficiency analysis. Energy Effic. 4, 355–369 (2011).
Google Scholar
Source: Ecology - nature.com