in

Impact of shredding degree on papermaking potential of recycled waste

  • 1.

    Campbell, W. B. The Cellulose-Water Relationship in Papermaking (Dept Of Interior, Forest Service Bulletin, 1933).

    Google Scholar 

  • 2.

    Przybysz, K. & Wandelt, P. Pulp quality control system Part 3 Fiber strength. Przeglad Pap. 61, 283–286 (2005).

    Google Scholar 

  • 3.

    Horn, R. A. Morphology of Wood Pulp Fiber from Softwoods and Influence on Paper Strength. Research Paper FPL-242 (U.S. Department of Agriculture, 1974).

    Google Scholar 

  • 4.

    Joutsimo, O., Wathén, R. & Tamminen, T. Effects of fiber deformations on pulp sheet properties and fiber strength. Pap. Puu-Pap. Tim. 87, 392–397 (2005).

    CAS 

    Google Scholar 

  • 5.

    Kerekes, R. & Senger, J. J. Characterizing refining action in low-consistency refiners by forces on fibres. J. Pulp Pap. Sci. 32, 1–8 (2006).

    CAS 

    Google Scholar 

  • 6.

    Karlström, A. & Eriksson, K. Fiber energy efficiency. Part 2: Forces acting on the refiner bars. Nord. Pulp Pap. Res. J. 06, 332–343 (2014).

    Article 

    Google Scholar 

  • 7.

    Zeng, X., Retulainen, E., Heinemann, S. & Fu, S. Fibre deformations induced by different mechanical treatment and their effect on zero-span strength. Nord. Pulp Paper Res. J. 27, 335–342 (2012).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Joutsimo, O. & Asikainen, S. Effect of fiber wall pore structure on pulp sheet density of softwood kraft pulp fibers. BioRes. 8, 2719–2737 (2013).

    Article 

    Google Scholar 

  • 9.

    Tingjie, C. et al. Effect of refining on physical properties and paper strength of pinus massoniana and china fir cellulose fibers. BioRes. 11, 7839–7848 (2016).

    Google Scholar 

  • 10.

    Laine, C., Wang, X. S., Tenkanen, M. & Varhimo, A. Changes in the fiber wall during refining of bleached pine kraft pulp. Holzforschung 58, 233–240 (2004).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Gharehkhani, S. et al. Basic effects of pulp refining on fiber properties: A review. Carbohydr. Polym. 115, 785–803 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    El-Sharkawy, K., Haavisto, S., Koskenhely, K. & Paulapuro, H. Effect of fiber flocculation and filling design on refiner loadability and refining characteristics. BioRes. 3, 403–424 (2008).

    Article 

    Google Scholar 

  • 13.

    Kerekes, R. Energy and forces in refining. J. Pulp Pap. Sci. 36, 10–15 (2010).

    CAS 

    Google Scholar 

  • 14.

    O’Rourke, D. Nongovernmental organization strategies to influence global production and consumption. J. Ind. Ecol. 9, 115–128 (2005).

    Article 

    Google Scholar 

  • 15.

    Holik, H. Handbook of Paper and Board 2nd edn. (Willey-VCH, 2013).

    Book 

    Google Scholar 

  • 16.

    Przybysz, K. Fibrillation of cellulose fibers. Przemysl Chem. 82, 1149–1151 (2003).

    CAS 

    Google Scholar 

  • 17.

    Ferritsius, R. et al. Development of fibre properties in full scale HC and LC refining. in 2016 International Mechanical Pulping Conference, Jacksonville, 26–28 (2016).

  • 18.

    Kane, M. W. Beating, fiber length distributions and tensile strength-part. Pulp Pap. Canada 60, 308–359 (1959).

    Google Scholar 

  • 19.

    Hartman, R. R. Mechanical Treatment of Pulps for Property Development. PhD Dissertation, Institute of Paper Science and Technology (1984).

  • 20.

    Constable, M. The paper shredder: Trails of law. Law Text Culture 23, 276–293 (2019).

    Google Scholar 

  • 21.

    Japanese Paper Recycle, Paper Recycling Promotion Center http://www.prpc.or.jp/document/publications/japan/.

  • 22.

    Paper Recycling Facts, University of Southern Indiana https://www.usi.edu/recycle/paper-recycling-facts/.

  • 23.

    Chauhan, V. S., Kumar, N., Kumar, M. & Thapar, S. K. Weighted average fiber length: An important parameter in papermaking. Taiwan Lin Ye Ke Xue 28, 51–65 (2013).

    Google Scholar 

  • 24.

    Wangaard, F. F. & Woodson, G. E. Fiber length–fiber strength, interrelationship for slash pine and its effect on pulp–sheet properties. Wood Sci. 5, 235–240 (1973).

    Google Scholar 

  • 25.

    Perng, Y. S., Wang, I. C., Cheng, Y. L. & Chen, Y. C. Effects of fiber morphological characteristics and refining on handsheet properties. Taiwan Lin Ye Ke Xue 24, 127–139 (2009).

    Google Scholar 

  • 26.

    Choi, E. Y. & Cho, B. U. Effect of beating and water impregnation on fiber swelling and paper properties. J. Korea TAPPI 45, 88–95 (2013).

    CAS 

    Google Scholar 

  • 27.

    Pruden, B. The effect of fines on paper properties. Pap. Technol. 46, 19–26 (2005).

    Google Scholar 

  • 28.

    Kibblewhite, R. P. Interrelations between pulp refining treatments, fibre and pulp fines quality, and pulp freeness. Pap. Puu-Pap. Tim. 57, 519–526 (1975).

    Google Scholar 

  • 29.

    Olejnik, K. Effect of the free swelling of refined cellulose fibres on the mechanical properties of paper. Fibres Text. East. Eur. 20, 113–116 (2012).

    CAS 

    Google Scholar 

  • 30.

    Sundblad, S. Predictions of Pulp and Paper Properties Based on Fiber Morphology. Master Thesis in Macromolecular Materials, KTH Vetenskap Och Konst, Stockholm, Sweden (2015).

  • 31.

    Retulainen, E. The Role of Fibre Bonding in Paper Properties (National Technical Information Service, Espoo, 1997).

    Google Scholar 

  • 32.

    Hietanen, S. E. K. Fundamental aspects of the refining process. Pap. Puu-Pap. Tim. 72, 158–170 (1990).

    CAS 

    Google Scholar 

  • 33.

    Wang, X., Maloney, T. & Paulapuro, H. Fibre fibrillation and its impact on sheet properties. Pap. Puu-Pap. Tim. 89, 148–151 (2007).

    CAS 

    Google Scholar 

  • 34.

    Lindqvist, H. et al. The effect of fibre properties, fines content and surfactant addition on dewatering, wet and dry web properties. Nord. Pulp Pap. Res. J. 27, 104–111 (2012).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Kekäläinen, K., Illikainen, M. & Niinimäki, J. Morphological changes in never-dried kraft fibers under mechanical shearing. Cellulose 19, 879–889 (2012).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Heymer, J. O., Olson, J. A. & Kerekes, R. The role of multiple loading cycles on pulp in refiners. Nord. Pulp Pap. Res. 26, 283–287 (2018).

    Article 

    Google Scholar 

  • 37.

    Vishtal, A. & Retulainen, E. Boosting the extensibility potential of fibre networks: A review. BioRes. 9, 7933–7983 (2014).

    Article 

    Google Scholar 

  • 38.

    Cheng, Q., Wang, J., McNeel, J. & Jacobson, P. Water retention value measurements of cellulosic materials using a centrifuge technique. BioRes. 5, 1945–1954 (2010).

    CAS 

    Google Scholar 

  • 39.

    Scallan, A. M. & Carles, J. The correlation of the water retention value with the fibre saturation point. Sven Papperstidning 75, 699–703 (1972).

    CAS 

    Google Scholar 

  • 40.

    Bäckström, M., Kolar, M. & Htun, M. Characterisation of fines from unbleached kraft pulps and their impact on sheet properties. Holzforschung 62, 546–552 (2008).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Ferreira, P. J., Matos, S. & Figueiredo, M. M. Size characterization of fibres and fines in hardwood kraft pulps. Part. Part. Syst. Charact. 16, 20–24 (1999).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Ciesielski, K. & Olejnik, K. Application of neural networks for estimation of paper properties based on refined pulp properties. Fibres Text. East. Eur. 5, 126–132 (2014).

    Google Scholar 

  • 43.

    Paavilainen, L. Importance of particle size: fibre length and fines: for the characterization of softwood kraft pulp. Pap. Puu-Pap. Tim. 72, 516–526 (1990).

    CAS 

    Google Scholar 

  • 44.

    Hai, L. V., Park, H. J. & Seo, Y. B. Effect of PFI mill and Valley beater refining on cellulose degree of polymerization, alpha cellulose contents, and crystallinity of wood and cotton fibers. J. Korea TAPPI 45, 27–33 (2013).

    CAS 

    Google Scholar 

  • 45.

    Wathén, R. Studies on Fiber Strength and its Effect on Paper Properties. Dissertation for the degree of Doctor of Science in Technology, KCL Communications 11, Helsinki University of Technology (2006).

  • 46.

    Motamedian, H. R., Halilovic, A. E. & Kulachenko, A. Mechanisms of strength and stiffness improvement of paper after PFI refining with a focus on the effect of fines. Cellulose 26, 4099–4124 (2019).

    Article 

    Google Scholar 

  • 47.

    Nordström, B. & Hermansson, L. Effect of fiber length on formation and strength efficiency in twin-wire roll forming. Nord. Pulp Pap. Res. 32, 119–125 (2017).

    Article 

    Google Scholar 

  • 48.

    Biermann, C. J. Refining and Pulp Characterization. Handbook of Pulping and Papermaking 138–139 (Academic Press, 1996).

    Google Scholar 

  • 49.

    Jang, H. F. & Seth, R. S. Determining the mean values for fibre physical properties. Nord. Pulp Pap. Res. J. 19, 372–378 (2004).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Bajpai, P. The Pulp and Paper Industry. Pulp and Paper Industry: Emerging Waste Water Treatment Technologies 23–25 (Elesiver, 2017).

    Google Scholar 

  • 51.

    Fišerová, M., Gigac, J. & Balberčák, J. Relationship between fibre characteristics and tensile strength of hardwood and softwood kraft pulps. Cell. Chem. Technol. 44, 249–253 (2010).

    Google Scholar 

  • 52.

    Johansson, A. Correlations Between Fibre Properties and Paper Properties. Master Thesis in Pulp Technology, KTH Vetenskap Och Konst (2011).

  • 53.

    Sjöberg, J. & Höglund, H. Refining system for sack paper pulp: Part 1 HC refining under pressurised conditions and subsequent LC refining. Nord. Pulp Pap. Res. 20, 320–328 (2005).

    Article 

    Google Scholar 

  • 54.

    Larsson, P. T., Lindström, T., Carlsson, L. A. & Fellers, C. Fiber length and bonding effects on tensile strength and toughness of kraft paper. J. Mater. Sci. 53, 3006–3015 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 55.

    Watson, A. J. & Dadswell, H. E. Influence of fibre morphology on paper properties. Part 1: fibre length. Appita J. 14, 168–178 (1961).

    CAS 

    Google Scholar 

  • 56.

    Horn, R. A. Morphology of Pulp Fiber from Hardwoods and Influence on Paper Strength. USDA Forest Service, Research Paper FPL 312, Forest Products Laboratory, 1–10 (1978).

  • 57.

    Seth, R. S. The measurement and significance of fines. Pulp Pap. Canada 104, 41–44 (2003).

    CAS 

    Google Scholar 

  • 58.

    Odabas, N., Henniges, U., Potthast, A. & Rosenau, T. Cellulosic fines: properties and effects. Prog. Mater. Sci. 83, 574–594 (2016).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Sirviö, J. & Nurminen, I. Systematic changes in paper properties caused by fines. Pulp Pap. Canada 105, 39–42 (2004).

    Google Scholar 

  • 60.

    Bossu, J. et al. Fine cellulosic materials produced from chemical pulp: The combined effect of morphology and rate of addition on paper properties. Nanomaterials 9, 321 (2019).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Niskanen, K. (ed.) Paper Physics, Papermaking Science and Technology, Book 16 (Finnish Paper Engineers Association and TAPPI, 1998).

    Google Scholar 

  • 62.

    Maloney, T. C., Todorovic, A. & Paulapuro, H. The effect of fiber swelling on press dewatering. Nord. Pulp Pap. Res. 13, 285–291 (1998).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Fischer, W. J. et al. Pulp fines-characterization, sheet formation, and comparison to microfibrillated cellulose. Polymers 9, 366–378 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 64.

    Park, J. Y., Melani, L., Lee, H. & Kim, H. J. Effect of pulp fibers on the surface softness component of hygiene paper. Holzforschung 74, 497–504 (2020).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Jonsson, D. K. et al. Energy at your service: Highlighting energy usage systems in the context of energy efficiency analysis. Energy Effic. 4, 355–369 (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Making the case for hydrogen in a zero-carbon economy

    Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe