in

Increased ranking change in wheat breeding under climate change

  • 1.

    Reynolds, M. P. et al. Improving global integration of crop research. Science 357, 359–360 (2017).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Braun, H., Atlin, G. & Payne, T. Multi-location testing as a tool to identify plant response to global climate change. in Climate Change and Crop Production (ed. Reynolds, M. P.) 115–138 (CABI, 2010).

  • 3.

    Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).

    Article 

    Google Scholar 

  • 4.

    Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).

    Article 

    Google Scholar 

  • 5.

    Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 14–21 (2007).

    Article 

    Google Scholar 

  • 6.

    Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).

    Article 

    Google Scholar 

  • 7.

    Crespo-Herrera, L. A. et al. Genetic yield gains in CIMMYT’s international elite spring wheat yield trials by modeling the genotype × environment interaction. Crop Sci. 57, 789–801 (2017).

    Article 

    Google Scholar 

  • 8.

    Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Rosegrant, M. W. & Cline, S. A. Global food security: challenges and polices. Science 302, 1917–1919 (2003).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Li, Y., Suontama, M., Burdon, R. D. & Dungey, H. S. Genotype by environment interactions in forest tree breeding: review of methodology and perspective on research and application. Tree Genet. Genomes 13, 60 (2017).

    Article 

    Google Scholar 

  • 11.

    Mishra, R. M. et al. Crossover interactions for grain yield in multienvironmental trials of winter wheat. Crop Sci. 46, 1291–1298 (2006).

    Article 

    Google Scholar 

  • 12.

    Allard, R. W. & Bradshaw, A. D. Implications of genotype–environmental interactions in applied plant breeding. Crop Sci. 4, 503–508 (1964).

    Article 

    Google Scholar 

  • 13.

    Reynolds, M. P., Hays, D. & Chapman, S. Breeding for adaptation to heat and drought stress. in Climate Change and Crop Production (ed. Reynolds, M. P.) 71–91 (CABI, 2010).

  • 14.

    Leon, N., Jannink, J., Edwards, J. W. & Kaeppler, S. M. Introduction to a special issue on genotype by environment interaction. Crop Sci. 56, 2081–2089 (2016).

    Article 

    Google Scholar 

  • 15.

    Reynolds, M. & Langridge, P. Physiological breeding. Curr. Opin. Plant Biol. 31, 162–171 (2016).

    Article 

    Google Scholar 

  • 16.

    Gourdji, S. M., Mathews, K. L., Reynolds, M., Crossa, J. & Lobell, D. B. An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc. R. Soc. B. 2018, 20122190 (2012).

    Google Scholar 

  • 17.

    Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Sharma, R. C. et al. Genetic gains for grain yield in CIMMYT spring bred wheat across international environment. Crop Sci. 52, 1522–1533 (2012).

    Article 

    Google Scholar 

  • 19.

    Boehm Jr, J. D., Ibba, M., Kiszonas, A. & Morris, C. F. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality. Crop Sci. 57, 1485–1498 (2017).

    Article 

    Google Scholar 

  • 20.

    Lillemo, M., van Ginkel, M., Trethowan, R. M., Hernandez, E. & Crossa, J. Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci. 45, 2443–2453 (2005).

    Article 

    Google Scholar 

  • 21.

    Manes, Y. et al. Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010. Crop Sci. 52, 1543–1552 (2012).

    Article 

    Google Scholar 

  • 22.

    You, L. et al. Spatial Production Allocation Model (SPAM) 2005 V3.2 International Food Policy Research Institute (IFPRI), International Institute fo Applied Systems Analysis (IIASA) (2017).

  • 23.

    Finlay, K. W. & Wilkinson, G. N. The analysis of adaptation in a plant-breeding programme. Aus. J. Agric. Res. 14, 742–754 (1963).

    Article 

    Google Scholar 

  • 24.

    De los Campos et al. A data-driven simulation platform to predict cultivars’ performance under uncertain weather conditions. Nat. Commun. 11, 4876 (2020).

    Article 

    Google Scholar 

  • 25.

    Lantican, M. A. et al. Impacts of International Wheat Improvement Research 1994–2014 (CIMMYT, 2016).

  • 26.

    Dreccer, M. F., Bonnett, D. & Lafarge, T. Plant breeding under a changing climate. in Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 8013–8024 (Springer, 2012).

  • 27.

    Laiding, F., Drobek, T. & Meyer, U. Genotypic and environmental variability of yield for cultivars from 30 different crops in German official variety trials. Plant Breed. 127, 541–547 (2008).

    Article 

    Google Scholar 

  • 28.

    Allard, R. W. Principles of Plant Breeding 2nd edn (John Wiley & Sons, 1999).

  • 29.

    Kusmec, A., Srinivasan, S., Nettleton, D. & Schnable, P. S. Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat. Plants 3, 715–723 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Gauch, H. G. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs (Elsevier, 1992).


  • Source: Ecology - nature.com

    Phenotypic plasticity of fungal traits in response to moisture and temperature

    Body size dependent dispersal influences stability in heterogeneous metacommunities