in

Individual fate and gut microbiome composition in the European wild rabbit (Oryctolagus cuniculus)

  • 1.

    Graham, A. L. et al. Fitness consequences of immune responses: Strengthening the empirical framework for ecoimmunology. Funct. Ecol. 25, 5–17 (2011).

    Article  Google Scholar 

  • 2.

    Maynard, C. L., Elson, C. O., Hatton, R. D. & Weaver, C. T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 3.

    Baldo, L., Riera, J. L., Tooming-Klunderud, A., Albà, M. M. & Salzburger, W. Gut microbiota dynamics during dietary shift in eastern African cichlid fishes. PLoS ONE 10, 1–23. https://doi.org/10.1371/journal.pone.0127462 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Shapira, M. Gut microbiotas and host evolution: Scaling up symbiosis. Trends Ecol. Evol. 31, 539–549 (2016).

    PubMed  Article  Google Scholar 

  • 5.

    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 6.

    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Org, E. et al. Sex differences and hormonal effects on gut microbiota composition in mice. Gut Microbes 7, 313–322 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Russell, J. B. Factors that alter rumen microbial ecology. Science 292, 1119–1122 (2001).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 9.

    DuPont, A. W. & DuPont, H. L. The intestinal microbiota and chronic disorders of the gut. Nat. Rev. Gastroenterol. Hepatol. 8, 523–531 (2011).

    PubMed  Article  Google Scholar 

  • 10.

    Walters, A. W. et al. The microbiota influences the Drosophila melanogaster life history strategy. Mol. Ecol. 29, 639–653 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Moreno, S., Villafuerte, R., Cabezas, S. & Lombardi, L. Wild rabbit restocking for predator conservation in Spain. Biol. Cons. 118, 183–193 (2004).

    Article  Google Scholar 

  • 12.

    Webb, N. J. Growth and mortality in juvenile European wild rabbits (Oryctolagus cuniculus). J. Zool. 230, 665–677 (1993).

    Article  Google Scholar 

  • 13.

    Villafuerte, R. & Delibes-Mateos, M. The IUCN red list of threatened species: Oryctolagus cuniculus (2019). https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T41291A45189779.en (2019).

  • 14.

    Ferrand, N. Inferring the evolutionary history of the European rabbit (Oryctolagus cuniculus) from molecular markers. In Lagomorph Biology: Evolution, Ecology and Conservation (eds Alves, P. C. et al.) 47–63 (Springer, Berlin, 2008).

    Google Scholar 

  • 15.

    Rafati, N. N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Delibes-Mateos, M., Villafuerte, R., Cooke, B. & Alves, P. C. Oryctolagus cuniculus (Linnaeus, 1758). In Lagomorphs: Pikas, Rabbits and Hares of the World (eds Smith, A. T. et al.) 99–104 (John Hopkins University Press, Baltimore, 2018).

    Google Scholar 

  • 17.

    Geraldes, A. et al. Reduced introgression of the Y chromosome between subspecies of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula. Mol. Ecol. 17, 4489–4499 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Sneddon, I. A. Latrine use by the European rabbit (Oryctolagus cuniculus). J. Mammal. 72, 769–775 (1991).

    Article  Google Scholar 

  • 19.

    Mykytowycz, R. & Dudzinski, M. L. A study on the weight of odoriferous and other glands in relation to the social status and degree of sexual activity in the wild rabbit, Oryctolagus cuniculus (L.). Wildl. Res. 11, 31–47 (1996).

    Article  Google Scholar 

  • 20.

    Rouco, C., Villafuerte, R., Castro, F. & Ferreras, P. Effect of artificial warren size on a restocked European wild rabbit population. Anim. Conserv. 14, 117–123 (2011).

    Article  Google Scholar 

  • 21.

    Villafuerte, R. & Viñuela, J. Size of rabbits consumed by black kites increased after a rabbit epizootic. Mammal Rev. 29, 261–264 (1999).

    Article  Google Scholar 

  • 22.

    Ferrera, I. et al. High-diversity biofilm for the oxidation of sulfide-containing effluents. Appl. Environ. Microbiol. 64, 726–734 (2004).

    CAS  Google Scholar 

  • 23.

    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 24.

    Edgar, R. C. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 10, 996–998 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article  CAS  Google Scholar 

  • 26.

    Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).

    Google Scholar 

  • 28.

    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.3-5 (2016).

  • 29.

    Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 30.

    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Bayer, E. A., Shoham, Y. & Lamed, R. Cellulose-Decomposing Bacteria and Their Enzyme Systems 3rd edn. (Springer, Berlin, 2006).

    Google Scholar 

  • 32.

    Foley, W. J. & Cork, S. J. Use of fibrous diets by small herbivores: How far can the rules be ‘bent’?. Trends Ecol. Evol. 7, 159–162 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Hirakawa, H. Coprophagy in leporids and other mammalian herbivores. Mammal Rev. 31, 61–80 (2001).

    Article  Google Scholar 

  • 34.

    Zeng, B. et al. The bacterial communities associated with fecal types and body weight of rex rabbits. Sci. Rep. 5, 9342. https://doi.org/10.1038/srep09342 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Grimont, F. & Grimont, P. A. D. Proteobacteria: Gamma subclass. In The Prokaryotes Vol. 6 (eds Falkow, S. et al.) 219–244 (Springer, New York, 2006).

    Google Scholar 

  • 36.

    Stecher, B. et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 109, 1269–1274 (2012).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 37.

    Gagen, E. J., Padmanabha, J., Denman, S. E. & McSweeney, C. S. Hydrogenotrophic culture enrichment reveals rumen Lachnospiraceae and Ruminococcaceae acetogens and hydrogen-responsive Bacteroidetes from pasture-fed cattle. FEMS Microbiol. Lett. 362, 1–8 (2015).

    Article  CAS  Google Scholar 

  • 38.

    Meehan, C. J. & Beiko, R. G. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol. Evol. 6, 703–713 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Barcenilla, A. et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654–1661 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Flint, H. J. Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Adv. Appl. Microbiol. 56, 89–120 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Stalder, G. L. et al. Gut microbiota of the European hare (Lepus europaeus). Sci. Rep. 9, 2738. https://doi.org/10.1038/s41598-019-39638-9 (2019).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 42.

    Gillilland, M. G. et al. Ecological succession of bacterial communities during conventionalization of germ-free mice. Appl. Environ. Microbiol. 78, 2359–2366 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Lupp, C. Host-Mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Punzalan, C. & Qamar, A. Probiotics for the treatment of liver disease. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis (eds Floch, M. H. et al.) 373–381 (Academic Press, New York, 2017).

    Google Scholar 

  • 46.

    Lopez-Siles, M. et al. Mucosa-associated Faecalibacterium prausnitzii phylotype richness is reduced in patients with inflammatory bowel disease. Appl. Environ. Microbiol. 81, 7582–7592 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Li, H. et al. Pika population density is associated with the composition and diversity of gut microbiota. Front. Microbiol. 7, 758 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Amato, K. R. Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Sci. Med. 1, 10–29 (2013).

    Article  Google Scholar 

  • 49.

    Thompson, H. V. & King, C. M. The European Rabbit: History and Biology of a Successful Colonizer (Oxford Science Publications, Oxford, 1984).

    Google Scholar 

  • 50.

    Martins, H., Milne, J. A. & Rego, F. Seasonal and spatial variation in the diet of the wild rabbit (Oryctolagus cuniculus L.) in Portugal. J. Zool. 258, 395–404 (2002).

    Article  Google Scholar 

  • 51.

    Cubas, J. et al. Endemic plant species are more palatable to introduced herbivores than non-endemics. Proc. R. Soc. B 286, 20190136. https://doi.org/10.1098/rspb.2019.0136 (2019).

    Article  PubMed  Google Scholar 

  • 52.

    Khalifa, A. Y., Alsyeeh, A. M., Almalki, M. A. & Saleh, F. A. Characterization of the plant growth promoting bacterium, Enterobacter cloacae msr1, isolated from roots of non-nodulating Medicago sativa. Saudi J. Biol. Sci. 23, 79–86 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Polizeli, M. L. T. M. et al. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Fisher, E. H. & Stein, E. A. α-Amylases. In The Enzyme 2nd edn (eds Boyer, P. D. et al.) 313–143 (Academic Press Inc, New York, 1960).

    Google Scholar 

  • 55.

    Bletz, M. C. et al. Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat. Commun. 7, 13699. https://doi.org/10.1038/ncomms13699 (2016).

    CAS  Article  PubMed  PubMed Central  ADS  Google Scholar 

  • 56.

    Martínez-Mota, R. et al. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).

    PubMed  Article  CAS  Google Scholar 

  • 57.

    Van Leeuwen, P. et al. Effects of captivity, diet, and relocation on the gut bacterial communities of white-footed mice. Ecol. Evol. 10, 4677–4690 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal to predict core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 59.

    Cowan, D. P. Aspects of the social organization of the European wild rabbit (Oryctolagus cuniculus). Ethology 75, 197–210 (1987).

    Article  Google Scholar 

  • 60.

    Marsh, M. K., Hutchings, M. R., McLeod, S. R. & White, P. C. Spatial and temporal heterogeneities in the contact behavior of rabbits. Behav. Ecol. Sociobiol. 65, 183–195 (2011).

    Article  Google Scholar 

  • 61.

    Moller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997. https://doi.org/10.1126/sciadv.1500997 (2016).

    CAS  Article  ADS  Google Scholar 

  • 62.

    Carro, F., Ortega, M. & Soriguer, R. C. Is restocking a useful tool for increasing rabbit densities?. Glob. Ecol. Conserv. 17, e00560. https://doi.org/10.1016/j.gecco.2019.e00560 (2019).

    Article  Google Scholar 

  • 63.

    Rouco, C., Ferreras, P., Castro, F. & Villafuerte, R. A longer confinement period favors European wild rabbit (Oryctolagus cuniculus) survival during soft releases in low-cover habitats. Eur. J. Wildl. Res. 56, 215–219 (2010).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)