in

Landscape complexity and US crop production

  • 1.

    Landis, D. A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 18, 1–12 (2017).

    Google Scholar 

  • 2.

    Aguilar, J. et al. Crop species diversity changes in the United States: 1978–2012. PLoS ONE 10, e0136580 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Census of Agriculture (USDA National Agricultural Statistics Service, 2017); www.nass.usda.gov/AgCensus

  • 4.

    Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).

    PubMed 

    Google Scholar 

  • 5.

    Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Abson, D. J., Fraser, E. D. & Benton, T. G. Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2, 2 (2013).

    Google Scholar 

  • 8.

    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Ojha, S. & Dimov, L. Variation in the diversity-productivity relationship in young forests of the eastern United States. PLoS ONE 12, e0187106 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).

    Google Scholar 

  • 11.

    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Bastian, O., Grunewald, K., Syrbe, R. U., Walz, U. & Wende, W. Landscape services: the concept and its practical relevance. Landsc. Ecol. 29, 1463–1479 (2014).

    Google Scholar 

  • 13.

    Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).

    Google Scholar 

  • 15.

    Li, C. et al. Crop diversity for yield increase. PLoS ONE 4, e8049 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Swinton, S. M., Lupi, F., Robertson, G. P. & Hamilton, S. K. Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 64, 245–252 (2007).

    Google Scholar 

  • 17.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Burchfield, E. K., Nelson, K. S. & Spangler, K. The impact of agricultural landscape diversification on US crop production. Agric. Ecosyst. Environ. 285, 106615 (2019).

    Google Scholar 

  • 19.

    Galpern, P., Vickruck, J., Devries, J. H. & Gavin, M. P. Landscape complexity is associated with crop yields across a large temperate grassland region. Agric. Ecosyst. Environ. 290, 106724 (2020).

    Google Scholar 

  • 20.

    Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Burke, M. & Emerick, K. Adaptation to climate change: evidence from US agriculture. Am. Econ. J. Econ. Pol. 8, 106–140 (2016).

    Google Scholar 

  • 22.

    Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).

    ADS 

    Google Scholar 

  • 23.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Schauberger, B., Rolinski, S. & Müller, C. A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environ. Res. Lett. 11, 123001 (2016).

    ADS 

    Google Scholar 

  • 25.

    Burchfield, E., Matthews-Pennanen, N., Stoebner, J. & Lant, C. Changing yields in the central United States under climate and technological change. Clim. Change 159, 329–346 (2019).

    ADS 

    Google Scholar 

  • 26.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).

    ADS 

    Google Scholar 

  • 28.

    Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).

    PubMed 

    Google Scholar 

  • 29.

    Grab, H., Danforth, B., Poveda, K. & Loeb, G. Landscape simplification reduces classical biological control and crop yield. Ecol. Appl. 28, 348–355 (2018).

    PubMed 

    Google Scholar 

  • 30.

    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2017).

    Google Scholar 

  • 33.

    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).

    Google Scholar 

  • 34.

    Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2012).

    Google Scholar 

  • 35.

    Swift, M. J., Izac, A.-M. N. & van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric. Ecosyst. Environ. 104, 113–134 (2004).

    Google Scholar 

  • 36.

    CropScrape—Cropland Data Layer (USDA National Agricultural Statistics Service, 2018); https://nassgeodata.gmu.edu/CropScape/

  • 37.

    Schulte, L. A. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Liang, X. Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. USA 114, E2285–E2292 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Brandes, E. et al. Subfield profitability analysis reveals an economic case for cropland diversification. Environ. Res. Lett. 11, 014009 (2016).

    ADS 

    Google Scholar 

  • 41.

    Capmourteres, V. et al. Precision conservation meets precision agriculture: a case study from southern Ontario. Agric. Syst. 167, 176–185 (2018).

    Google Scholar 

  • 42.

    Census of Agriculture (USDA National Agricultural Statistics Service, 2019); www.nass.usda.gov/AgCensus

  • 43.

    Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).

    Google Scholar 

  • 45.

    PRISM Climate Data (PRISM Climate Group, 2004) http://www.prism.oregonstate.edu/

  • 46.

    Miller, P., Lanier, W. & Brandt, S. Using Growing Degree Days to Predict Plant Stages (Montana State University, 2001); http://store.msuextension.org/publications/AgandNaturalResources/MT200103AG.pdf

  • 47.

    agweather connection (Mesonet, 2007); https://www.mesonet.org/mesonet_connection/V2_No8.pdf

  • 48.

    Corn Growing Degree Days (NDAWN: North Dakota Agricultural Weather Network, 2017); https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-days.html

  • 49.

    Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States (US Department of Agriculture, Natural Resources Conservation Service, 2014); https://gdg.sc.egov.usda.gov/

  • 50.

    Dobos, R. R., Sinclair, H. R., Jr & Robotham, M. P. User Guide for the National Commodity Crop Productivity Index (NCCPI, 2012).

  • 51.

    Plexida, S. G., Sfougaris, A. I., Ispikoudis, I. P. & Papanastasis, V. P. Selecting landscape metrics as indicators of spatial heterogeneity—a comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 26, 26–35 (2014).

    ADS 

    Google Scholar 

  • 52.

    Schindler, S., Poirazidis, K. & Wrbka, T. Towards a core set of landscape metrics for biodiversity assessments: a case study from Dadia National Park, Greece. Ecol. Indic. 8, 502–514 (2008).

    Google Scholar 

  • 53.

    Turner, M. G. Spatial and temporal analysis of landscape patterns. Landsc. Ecol. 4, 21–30 (1990).

    Google Scholar 

  • 54.

    Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).

    Google Scholar 

  • 55.

    Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1–10 (2019).

    Google Scholar 

  • 56.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/

  • 57.

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Series B Stat. Methodol. 71, 319–392 (2009).

    MathSciNet 
    MATH 

    Google Scholar 

  • 58.

    Blanc, E. & Schlenker, W. The use of panel models in assessments of climate impacts on agriculture. Rev. Environ. Econ. Policy 11, 258–279 (2017).

    Google Scholar 

  • 59.

    Level III Ecoregions of the Continental United States (US Environmental Protection Agency, 2011); https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states

  • 60.

    Bakka, H. et al. Spatial modeling with R-INLA: a review. Wiley Interdiscip. Rev. Comput. Stat. 10, e1443 (2018).

    MathSciNet 

    Google Scholar 

  • 61.

    2018 Cartographic Boundary Files [data set] (US Census Bureau, 2018); https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html


  • Source: Ecology - nature.com

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture

    Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought