Landis, D. A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 18, 1–12 (2017).
Aguilar, J. et al. Crop species diversity changes in the United States: 1978–2012. PLoS ONE 10, e0136580 (2015).
Google Scholar
Census of Agriculture (USDA National Agricultural Statistics Service, 2017); www.nass.usda.gov/AgCensus
Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).
Google Scholar
Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).
Google Scholar
Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).
Google Scholar
Abson, D. J., Fraser, E. D. & Benton, T. G. Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2, 2 (2013).
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).
Google Scholar
Ojha, S. & Dimov, L. Variation in the diversity-productivity relationship in young forests of the eastern United States. PLoS ONE 12, e0187106 (2017).
Google Scholar
Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).
Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).
Google Scholar
Bastian, O., Grunewald, K., Syrbe, R. U., Walz, U. & Wende, W. Landscape services: the concept and its practical relevance. Landsc. Ecol. 29, 1463–1479 (2014).
Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).
Google Scholar
Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).
Li, C. et al. Crop diversity for yield increase. PLoS ONE 4, e8049 (2009).
Google Scholar
Swinton, S. M., Lupi, F., Robertson, G. P. & Hamilton, S. K. Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 64, 245–252 (2007).
Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).
Google Scholar
Burchfield, E. K., Nelson, K. S. & Spangler, K. The impact of agricultural landscape diversification on US crop production. Agric. Ecosyst. Environ. 285, 106615 (2019).
Galpern, P., Vickruck, J., Devries, J. H. & Gavin, M. P. Landscape complexity is associated with crop yields across a large temperate grassland region. Agric. Ecosyst. Environ. 290, 106724 (2020).
Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).
Google Scholar
Burke, M. & Emerick, K. Adaptation to climate change: evidence from US agriculture. Am. Econ. J. Econ. Pol. 8, 106–140 (2016).
Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).
Google Scholar
Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).
Google Scholar
Schauberger, B., Rolinski, S. & Müller, C. A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environ. Res. Lett. 11, 123001 (2016).
Google Scholar
Burchfield, E., Matthews-Pennanen, N., Stoebner, J. & Lant, C. Changing yields in the central United States under climate and technological change. Clim. Change 159, 329–346 (2019).
Google Scholar
Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).
Google Scholar
Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).
Google Scholar
Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).
Google Scholar
Grab, H., Danforth, B., Poveda, K. & Loeb, G. Landscape simplification reduces classical biological control and crop yield. Ecol. Appl. 28, 348–355 (2018).
Google Scholar
Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).
Google Scholar
Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).
Google Scholar
Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2017).
Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).
Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2012).
Swift, M. J., Izac, A.-M. N. & van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric. Ecosyst. Environ. 104, 113–134 (2004).
CropScrape—Cropland Data Layer (USDA National Agricultural Statistics Service, 2018); https://nassgeodata.gmu.edu/CropScape/
Schulte, L. A. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).
Google Scholar
Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).
Google Scholar
Liang, X. Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. USA 114, E2285–E2292 (2017).
Google Scholar
Brandes, E. et al. Subfield profitability analysis reveals an economic case for cropland diversification. Environ. Res. Lett. 11, 014009 (2016).
Google Scholar
Capmourteres, V. et al. Precision conservation meets precision agriculture: a case study from southern Ontario. Agric. Syst. 167, 176–185 (2018).
Census of Agriculture (USDA National Agricultural Statistics Service, 2019); www.nass.usda.gov/AgCensus
Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).
Google Scholar
Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).
PRISM Climate Data (PRISM Climate Group, 2004) http://www.prism.oregonstate.edu/
Miller, P., Lanier, W. & Brandt, S. Using Growing Degree Days to Predict Plant Stages (Montana State University, 2001); http://store.msuextension.org/publications/AgandNaturalResources/MT200103AG.pdf
agweather connection (Mesonet, 2007); https://www.mesonet.org/mesonet_connection/V2_No8.pdf
Corn Growing Degree Days (NDAWN: North Dakota Agricultural Weather Network, 2017); https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-days.html
Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States (US Department of Agriculture, Natural Resources Conservation Service, 2014); https://gdg.sc.egov.usda.gov/
Dobos, R. R., Sinclair, H. R., Jr & Robotham, M. P. User Guide for the National Commodity Crop Productivity Index (NCCPI, 2012).
Plexida, S. G., Sfougaris, A. I., Ispikoudis, I. P. & Papanastasis, V. P. Selecting landscape metrics as indicators of spatial heterogeneity—a comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 26, 26–35 (2014).
Google Scholar
Schindler, S., Poirazidis, K. & Wrbka, T. Towards a core set of landscape metrics for biodiversity assessments: a case study from Dadia National Park, Greece. Ecol. Indic. 8, 502–514 (2008).
Turner, M. G. Spatial and temporal analysis of landscape patterns. Landsc. Ecol. 4, 21–30 (1990).
Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).
Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1–10 (2019).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/
Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Series B Stat. Methodol. 71, 319–392 (2009).
Google Scholar
Blanc, E. & Schlenker, W. The use of panel models in assessments of climate impacts on agriculture. Rev. Environ. Econ. Policy 11, 258–279 (2017).
Level III Ecoregions of the Continental United States (US Environmental Protection Agency, 2011); https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states
Bakka, H. et al. Spatial modeling with R-INLA: a review. Wiley Interdiscip. Rev. Comput. Stat. 10, e1443 (2018).
Google Scholar
2018 Cartographic Boundary Files [data set] (US Census Bureau, 2018); https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
Source: Ecology - nature.com