Wilson, E. O. The insect societies. (Harvard University Press, Cambridge, Massachusetts, USA, 1971).
Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).
Google Scholar
Robson, S. K. & Traniello, J. F. Key individuals and the organisation of labor in ants. In Information processing in social insects, 239–259 (Springer, 1999).
Smith, A. The wealth of nations (London, Methuen & Co, 1776).
Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects (Princeton University Press, 1978).
Jeanne, R. L. The evolution of the organization of work in social insects. Italian J. Zool. 20, 119–133 (1986).
Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).
Google Scholar
Franks, N. R. The organization of working teams in social insects. Trends Ecol. Evol. 2, 72–75 (1987).
Google Scholar
Robinson, G. E. Regulation of division of labor in insect societies. Ann. Rev. Entomol. 37, 637–665 (1992).
Google Scholar
O’Donnell, S. & Jeanne, R. L. Forager specialization and the control of nest repair in Polybia occidentalis olivier (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 27, 359–364 (1990).
Google Scholar
Wahl, L. Evolving the division of labour: generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).
Google Scholar
Jaffé, R., Kronauer, D. J., Bernhard Kraus, F., Boomsma, J. J. & Moritz, R. F. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3, 513–516 (2007).
Google Scholar
Kuhn, S. L. & Stiner, M. C. What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr. Anthropol. 47, 953–981 (2006).
Google Scholar
Wilson, E. O. Caste and division of labor in leaf-cutter ants (hymenoptera: Formicidae: Atta). Behav. Ecol. Sociobiol. 7, 157–165 (1980).
Google Scholar
Mirenda, J. T. & Vinson, S. B. Division of labour and specification of castes in the red imported fire ant solenopsis invicta buren. Animal Behav. 29, 410–420 (1981).
Google Scholar
Detrain, C. & Pasteels, J. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, pheidole pallidula (nyl.)(hymenoptera: Myrmicinae). J. Insect behav. 4, 157–176 (1991).
Google Scholar
Theraulaz, G., Bonabeau, E. & Denuebourg, J. Response threshold reinforcements and division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 327–332 (1998).
Google Scholar
Johnson, B. R. Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 147–152 (2003).
Google Scholar
Dukas, R. & Visscher, P. K. Lifetime learning by foraging honey bees. Animal Behav. 48, 1007–1012 (1994).
Google Scholar
Richardson, T. O., Mullon, C., Marshall, J. A., Franks, N. R. & Schlegel, T. The influence of the few: a stable ‘oligarchy’ controls information flow in house-hunting ants. Proc. R. Soc. B 285, 20172726 (2018).
Google Scholar
Trumbo, S. T. & Robinson, G. E. Learning and task interference by corpse-removal specialists in honey bee colonies. Ethology 103, 966–975 (1997).
Google Scholar
Julian, G. E. & Cahan, S. Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Animal Behav. 58, 437–442 (1999).
Google Scholar
Dukas, R. Life history of learning: performance curves of honeybees in settings that minimize the role of learning. Animal Behav. 75, 1125–1130 (2008).
Google Scholar
Charbonneau, D., Sasaki, T. & Dornhaus, A. Who needs ‘lazy’workers? inactive workers act as a ‘reserve’labor force replacing active workers, but inactive workers are not replaced when they are removed. PloS one 12, e0184074 (2017).
Google Scholar
Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1201 (2018).
Google Scholar
Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F. & Sumpter, D. J. Information flow, opinion polling and collective intelligence in house–hunting social insects. Philosop. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357, 1567–1583 (2002).
Google Scholar
Pratt, S. C., Mallon, E. B., Sumpter, D. J. & Franks, N. R. Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 52, 117–127 (2002).
Google Scholar
Möglich, M. Social organization of nest emigration in Leptothorax (Hym., Form.). Insectes Sociaux 25, 205–225 (1978).
Google Scholar
Visscher, P. K. Group decision making in nest-site selection among social insects. Ann. Rev. Entomol. 52, 255–275 (2007).
Google Scholar
McGlynn, T. P. The ecology of nest movement in social insects. Ann. Rev. Entomol. 57, 291–308 (2012).
Google Scholar
Franks, N. R. & Richardson, T. Teaching in tandem-running ants. Nature 439, 153–153 (2006).
Google Scholar
Richardson, T. O., Sleeman, P. A., McNamara, J. M., Houston, A. I. & Franks, N. R. Teaching with evaluation in ants. Curr. Biol. 17, 1520–1526 (2007).
Google Scholar
Franklin, E. L., Richardson, T. O., Sendova-Franks, A. B., Robinson, E. J. & Franks, N. R. Blinkered teaching: tandem running by visually impaired ants. Behav. Ecol. Sociobiol. 65, 569–579 (2011).
Google Scholar
Franks, N. R. et al. Ant search strategies after interrupted tandem runs. J. Exper. Biol. 213, 1697–1708 (2010).
Google Scholar
Flack, J. C., Krakauer, D. C. & de Waal, F. B. M. Robustness mechanisms in primate societies: a perturbation study. Proc. R. Soc. B Biol. Sci. 272, 1091–1099 (2005).
Google Scholar
Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R. & Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants? Behav. Ecol. Sociobiol. 66, 1407–1420 (2012).
Google Scholar
Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer Science & Business Media, 2003).
Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
Google Scholar
Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).
Google Scholar
Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).
Google Scholar
Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. 112, 4690–4695 (2015).
Google Scholar
Pratt, S. C., Sumpter, D. J., Mallon, E. B. & Franks, N. R. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Animal Behav. 70, 1023–1036 (2005).
Google Scholar
Volny, V. P. & Gordon, D. M. Genetic basis for queen–worker dimorphism in a social insect. Proc. Natl Acad. Sci. 99, 6108–6111 (2002).
Google Scholar
Walsh, J. T., Warner, M. R., Kase, A., Cushing, B. J. & Linksvayer, T. A. Ant nurse workers exhibit behavioural and transcriptomic signatures of specialization on larval stage. Animal Behav. 141, 161–169 (2018).
Google Scholar
Seeley, T. D. Division of labor between scouts and recruits in honeybee foraging. Behav. Ecol. Sociobiol. 12, 253–259 (1983).
Google Scholar
Boesch, C. Cooperative hunting roles among tai chimpanzees. Human Nat. 13, 27–46 (2002).
Google Scholar
Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29, 445–454 (1992).
Google Scholar
Gazda, S. K., Connor, R. C., Edgar, R. K. & Cox, F. A division of labour with role specialization in group–hunting bottlenose dolphins (tursiops truncatus) off cedar key, florida. Proc. R. Soc. B Biol. Sci. 272, 135–140 (2005).
Google Scholar
Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010).
Google Scholar
Nagy, M. et al. Context-dependent hierarchies in pigeons. Proc. Natl Acad. Sci. USA 110, 13049–13054 (2013).
Google Scholar
Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A. & Waters, J. S. Basketball teams as strategic networks. PloS One 7, e47445 (2012).
Google Scholar
Alleman, A., Stoldt, M., Feldmeyer, B. & Foitzik, S. Tandem-running and scouting behaviour are characterized by up-regulation of learning and memory formation genes within the ant brain. Mol. Ecol. 28, 2342–2359 (2019).
Google Scholar
Collett, T. S. & Collett, M. Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542 (2002).
Google Scholar
Collett, T. S., Graham, P. & Durier, V. Route learning by insects. Curr. Opin. Neurobiol. 13, 718–725 (2003).
Google Scholar
Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189, 579–588 (2003).
Google Scholar
Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529 (2004).
Google Scholar
Ravary, F., Lecoutey, E., Kaminski, G., Châline, N. & Jaisson, P. Individual experience alone can generate lasting division of labor in ants. Curr. Biol. 17, 1308–1312 (2007).
Google Scholar
Chittka, L. & Muller, H. Learning, specialization, efficiency and task allocation in social insects. Commun. Integr. Biol. 2, 151–154 (2009).
Google Scholar
Franklin, E. L., Robinson, E. J., Marshall, J. A., Sendova-Franks, A. B. & Franks, N. R. Do ants need to be old and experienced to teach? J. Exp. Biol. 215, 1287–1292 (2012).
Google Scholar
Westhus, C., Kleineidam, C. J., Roces, F. & Weidenmüller, A. Behavioural plasticity in the fanning response of bumblebee workers: impact of experience and rate of temperature change. Animal Behav. 85, 27–34 (2013).
Google Scholar
Dukas, R. Animal expertise: mechanisms, ecology and evolution. Animal Behav. 147, 199–210 (2019).
Google Scholar
Carter, C. E. & Grahn, J. A. Optimizing music learning: exploring how blocked and interleaved practice schedules affect advanced performance. Front. Psychol. 7, 1251 (2016).
Google Scholar
Stroeymeyt, N., Franks, N. R. & Giurfa, M. Knowledgeable individuals lead collective decisions in ants. J. Exp. Biol. 214, 3046–3054 (2011).
Google Scholar
Stroeymeyt, N., Giurfa, M. & Franks, N. R. Information certainty determines social and private information use in ants. Sci. Rep. 7, 43607 (2017).
Google Scholar
Hansen, M. J., Schaerf, T. M. & Ward, A. J. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).
Google Scholar
Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27, 2862–2868 (2017).
Google Scholar
Leca, J.-B., Gunst, N., Thierry, B. & Petit, O. Distributed leadership in semifree-ranging white-faced capuchin monkeys. Animal Behav. 66, 1045–1052 (2003).
Google Scholar
McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B Biol. Sci. 278, 3270–3276 (2011).
Google Scholar
Jolles, J. W., King, A. J. & Killen, S. S. The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35, 278–291 (2020).
Google Scholar
Cook, C. N. et al. Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honeybee scouts and recruits. J. Animal Ecol. 88, 236–246 (2019).
Google Scholar
Eyer, P.-A., Freyer, J. & Aron, S. Genetic polyethism in the polyandrous desert ant cataglyphis cursor. Behav. Ecol. 24, 144–151 (2013).
Google Scholar
Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J. & Mischler, T. C. Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Animal Behav. 65, 215–223 (2003).
Google Scholar
Dornhaus, A., Franks, N. R., Hawkins, R. & Shere, H. Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Animal Behav. 67, 959–963 (2004).
Google Scholar
Planqué, R., Dechaume-Moncharmont, F.-X., Franks, N. R., Kovacs, T. & Marshall, J. A. Why do house-hunting ants recruit in both directions? Naturwissenschaften 94, 911–918 (2007).
Google Scholar
Source: Ecology - nature.com