in

Livestock integration into soybean systems improves long-term system stability and profits without compromising crop yields

  • 1.

    Devendra, C. & Thomas, D. Smallholder farming systems in Asia. Agric. Syst. 71, 17–25 (2002).

    Article  Google Scholar 

  • 2.

    Herrero, M. et al. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327, 822–825 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Wright, I. A. et al. Integrating crops and livestock in subtropical agricultural systems. J. Sci. Food Agric. 92, 1010–1015 (2011).

    PubMed  Article  CAS  Google Scholar 

  • 4.

    Halstead, P. Pastoralism or household herding? Problems of scale and specialization in early Greek animal husbandry. World Archaeol. 28, 20–42 (1996).

    Article  Google Scholar 

  • 5.

    Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. 110, 12589–12594 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Altieri, M. A., Nicholls, C. I., Henao, A. & Lana, M. A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 35, 869–890 (2015).

    Article  Google Scholar 

  • 7.

    Garrett, R. D. et al. Drivers of decoupling and recoupling of crop and livestock systems at farm and territorial scales. Ecol. Soc. 25, 24 (2020).

    Article  Google Scholar 

  • 8.

    Verhoeven, J. T. A., Arheimer, B., Yin, C. & Hefting, M. M. Regional and global concerns over wetlands and water quality. Trends Ecol. Evol. 21, 96–103 (2006).

    PubMed  Article  Google Scholar 

  • 9.

    Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. 107, 8035–8040 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Macdonald, J. M., & Mcbride, W. D. The transformation of U.S. livestock agriculture: scale, efficiency, and risks (2009).

  • 11.

    Gerber, P. J. et al. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (2013).

  • 12.

    Lin, B. B. Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61, 183–193 (2011).

    Article  Google Scholar 

  • 13.

    Gaudin, A. C. M. et al. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 10, e0113261 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Peterson, C. A., Eviner, V. T. & Gaudin, A. C. M. Ways forward for resilience research in agroecosystems. Agric. Syst. 162, 19–27 (2018).

    Article  Google Scholar 

  • 15.

    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).

    Article  Google Scholar 

  • 16.

    Lobell, D. B. & Field, C. B. Global scale climate-crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 014002 (2007).

    ADS  Article  Google Scholar 

  • 17.

    Gornall, J. et al. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. B 365, 2973–2989 (2010).

    Article  Google Scholar 

  • 18.

    Osborne, T. M. & Wheeler, T. R. Evidence for a climate signal in trends of global crop yield variability over the past 50 years. Environ. Res. Lett. 8, 024001 (2013).

    ADS  Article  Google Scholar 

  • 19.

    United Nations. Population division of the department of economic and social affairs of the United Nations: world population prospects. https://population.un.org/wpp/DataQuery/ (2019).

  • 20.

    Schmidhuber, J. & Tubiello, F. N. Global food security under climate change. Proc. Natl. Acad. Sci. 104, 19703–19708 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 21.

    Bullock, J. M. et al. Resilience and food security: rethinking an ecological concept. J. Ecol. 105, 880–884 (2017).

    Article  Google Scholar 

  • 22.

    Knapp, S. & van der Heijden, M. G. A. A global meta-analysis of yield stability in organic and conservation agriculture. Nat. Commun. 9, 1–9 (2018).

    CAS  Article  Google Scholar 

  • 23.

    de Moraes, A. et al. Integrated crop-livestock systems in the Brazilian subtropics. Eur. J. Agron. 57, 4–9 (2014).

    Article  Google Scholar 

  • 24.

    Niles, M. T., Garrett, R. D. & Walsh, D. Ecological and economic benefits of integrating sheep into viticulture production. Agron. Sustain. Dev. 38, 1–11 (2018).

    Article  Google Scholar 

  • 25.

    Companhia Nacional de Abastecimento (CONAB). Safra brasileira de grãos: Tabela de levantamento. https://www.conab.gov.br/info-agro/safras/graos (2020).

  • 26.

    Empresa Brasileira de Pesquisa Agropecuária (Embrapa). ILPF em números. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/158636/1/2016-cpamt-ilpf-em-numeros.pdf (2016).

  • 27.

    Garrett, R. D. et al. Social and ecological analysis of commercial integrated crop livestock systems: current knowledge and remaining uncertainty. Agric. Syst. 155, 136–146 (2017).

    Article  Google Scholar 

  • 28.

    Bell, L. W. & Moore, A. D. Integrated crop-livestock systems in Australian agriculture: trends, drivers and implications. Agric. Syst. 111, 1–12 (2012).

    Article  Google Scholar 

  • 29.

    Sulc, R. M. & Franzluebbers, A. J. Exploring integrated crop-livestock systems in different ecoregions of the United States. Eur. J. Agron. 57, 21–30 (2014).

    Article  Google Scholar 

  • 30.

    Carvalho, P. C. F. et al. Animal production and soil characteristics from integrated crop-livestock systems: toward sustainable intensification. J. Anim. Sci. 96, 3513–3525 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Russelle, M. P., Entz, M. H. & Franzluebbers, A. J. Reconsidering integrated crop-livestock systems in North America. Agron. J. 99, 325–334 (2007).

    Article  Google Scholar 

  • 32.

    Carvalho, P. C. F. et al. Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutr. Cycl. Agroecosyst. 88, 259–273 (2010).

    Article  Google Scholar 

  • 33.

    Oliveira, C. A. O. et al. Comparison of an integrated crop-livestock system with soybean only: economic and production responses in southern Brazil. Renew. Agric. Food Syst. 29, 230–238 (2013).

    Article  Google Scholar 

  • 34.

    Ryschawy, J., Choisis, N., Choisis, J. P., Joannon, A. & Gibon, A. Mixed crop-livestock systems: an economic and environmental-friendly way of farming?. Animal 6, 1722–1730 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Peterson, C. A., Bell, L. W., Carvalho, P. C. F. & Gaudin, A. C. M. Resilience of an integrated crop–livestock system to climate change: a simulation analysis of cover crop grazing in southern Brazil. Front. Sustain. Food Syst. 4, 604099 (2020).

    Article  Google Scholar 

  • 36.

    Chávez, L. F. et al. Diversidade metabólica e atividade microbiana no solo em sistema de integração lavoura-pecuária sob intensidades de pastejo. Pesq. Agropec. Bras. 46, 1254–1261 (2011).

    Article  Google Scholar 

  • 37.

    Peterson, C. A. et al. Winter grazing does not affect soybean yield despite lower soil water content in a subtropical crop-livestock system. Agron. Sustain. Dev. 39, 26 (2019).

    CAS  Article  Google Scholar 

  • 38.

    Assmann, J. M. et al. Soil carbon and nitrogen stocks and fractions in a long-term integrated crop-livestock system under no-tillage in southern Brazil. Agric. Ecosyst. Environ. 190, 52–59 (2014).

    CAS  Article  Google Scholar 

  • 39.

    Peyraud, J. L. & Peeters, A. The role of grassland based production system in the protein security. Grassland Science in Europe – The multiple roles of grassland in the European bioeconomy 21, 29–43 (2016).

    Google Scholar 

  • 40.

    Harrison, G. W. Stability under environmental stress: resistance, resilience, persistence, and variability. Am. Nat. 113, 659–669 (1979).

    MathSciNet  Article  Google Scholar 

  • 41.

    Lehman, C. L. & Tilman, D. Biodiversity, stability, and productivity in competitive communities. Am. Nat. 156, 534–552 (2000).

    PubMed  Article  Google Scholar 

  • 42.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 43.

    Lightfoot, C. W. F., Dear, K. B. G. & Mead, R. Intercropping sorghum with cowpea in dryland farming systems in Botswana. II. Comparative stability of alternative cropping systems. Exp. Agric. 23, 435–442 (1987).

    Article  Google Scholar 

  • 44.

    Li, M., Peterson, C. A., Tautges, N. E., Scow, K. M. & Gaudin, A. C. M. Yields and resilience outcomes of organic, cover crop, and conventional practices in a Mediterranean climate. Sci. Rep. 9, 12283 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Nielsen, D. C. & Vigil, M. F. Wheat yield and yield stability of eight dryland crop rotations. Agron. J. 110, 594–601 (2018).

    Article  Google Scholar 

  • 46.

    Temesgen, T., Keneni, G., Sefera, T. & Jarso, M. Yield stability and relationships among stability parameters in faba bean (Vicia faba L.) genotypes. Crop J. 3, 258–268 (2015).

    Article  Google Scholar 

  • 47.

    Finlay, K. W. & Wilkinson, G. N. The analysis of adaptation in a plant-breeding programe. Aust. J. Agric. Res. 14, 742–754 (1963).

    Article  Google Scholar 

  • 48.

    Raun, W. R., Barreto, H. J. & Westerman, R. L. Use of stability analysis for long-term soil fertility experiments. Agron. J. 85, 159–167 (1993).

    Article  Google Scholar 

  • 49.

    Williams, A. et al. Soil water holding capacity mitigates downside risk and volatility in US rainfed maize: time to invest in soil organic matter?. PLoS ONE 11, e0160974 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 50.

    Williams, A. et al. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Sci. Rep. 8, 8467 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 52.

    Craven, D. et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0647-7 (2018).

    Article  PubMed  Google Scholar 

  • 53.

    Bennett, J. A. et al. Resistance of soil biota and plant growth to disturbance increases with plant diversity. Ecol. Lett. https://doi.org/10.1111/ele.13408 (2019).

    Article  PubMed  Google Scholar 

  • 54.

    Instituto Nacional de Meteorologia (INMET). Normais climatológicas do Brasil. https://portal.inmet.gov.br/normais (2020).

  • 55.

    Soil Survey Staff. Soil Taxonomy: a basic system of soil classification for making and interpreting soil surveys (USDA Natural Resources Conservation Service, 1999).

  • 56.

    Comissão de Química e Fertilidade do Solo – RS/SC (CQFS RS/SC). Manual de adubação e calagem para os Estados do Rio Grande do Sul e Santa Catarina (Sociedade Brasileira de Ciência do Solo, 2004).

  • 57.

    Barthram, G. T. (1985). Experimental techniques: The HFRO sward stick. In Alcok, M. M. The Hill farming research organization Biennial report 1984/1985, pp. 29–30 (1985).

  • 58.

    Mott, G. O., & Lucas, H. L. The design, conduct, and interpretation of grazing trials on cultivated and improved pastures. In Proceedings of the international grassland congress, pp. 1380–1386 (1952).

  • 59.

    Klingman, D. L., Miles, S. R. & Mott, G. O. The Cage Method for determining consumption and yield of pasture herbage. Agron. J. 35, 739–746 (1943).

    Article  Google Scholar 

  • 60.

    Nunes, P. A. A. et al. Grazing intensity determines pasture spatial heterogeneity and productivity in an integrated crop-livestock system. Grassl. Sci. 65, 49–59 (2019).

    Article  Google Scholar 

  • 61.

    van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & Boer, I. J. M. Global food supply: land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).

    Article  CAS  Google Scholar 

  • 62.

    Gil, J. D. B. et al. Tradeoffs in the quest for climate smart agricultural intensification in Mato Grosso, Brazil. Environ. Res. Lett. 13, 064025 (2018).

    ADS  Article  Google Scholar 

  • 63.

    National Research Council. Growth and Body Reserves. In: Nutrient Requirements of Beef Cattle, pp. 22–39 (NRC, 2016).

  • 64.

    USDA. Agricultural research service of the United States Department of Agriculture: FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/174270/nutrients (2019).

  • 65.

    Banco Central do Brasil. Correção de valores pela caderneta de poupança. https://www.bcb.gov.br (2020).

  • 66.

    Agrolink. Cotações dos produtos agropecuários: Bovinos. https://www.agrolink.com.br/cotacoes/historico/rs/boi-gordo-kg-vivo-1kg (2019).

  • 67.

    Agrolink. Cotações dos produtos agropecuários: Soja. https://www.agrolink.com.br/cotacoes/historico/rs/soja-em-grao-sc-60kg (2019).

  • 68.

    Banco Central do Brasil. Correção de valores pelo Índice Geral de Preços do Mercado (IGP-M/FGV). https://www3.bcb.gov.br/CALCIDADAO/publico/corrigirPorIndice.do?method=corrigirPorIndice (2020).

  • 69.

    International Monetary Fund. Exchange rate archives by month. https://www.imf.org/external/np/fin/data/param_rms_mth.aspx (2019).

  • 70.

    Companhia Nacional de Abastecimento (CONAB). Planilhas de custos de produção – Séries históricas. https://www.conab.gov.br/info-agro/custos-de-producao/planilhas-de-custo-de-producao/itemlist/category/414-planilhas-de-custos-de-producao-series-historicas (2019).

  • 71.

    R Core Team. R: a language and environment for statistical computing (2018).

  • 72.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 73.

    Lenth, R. emmeans: estimated marginal means, aka least-squares means. R package version 1.3.1. (2018).

  • 74.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article  Google Scholar 

  • 75.

    Fox, J. & Weisberg, S. An {R} companion to applied regression (2011).

  • 76.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).

    MathSciNet  MATH  Article  Google Scholar 

  • 77.

    de Mendiburu, F. agricolae: statistical procedures for agricultural research. R package version 1.2–8. (2017).

  • 78.

    Kunrath, T. R., Carvalho, P. C. F., Cadenazzi, M., Bredemeier, C. & Anghinoni, I. Grazing management in an integrated crop-livestock system: soybean development and grain yield. Rev. Ciência Agronômica 46, 645–653 (2015).

    Google Scholar 

  • 79.

    Peterson, C. A., Deiss, L. & Gaudin, C. M. Commercial integrated crop-livestock systems achieve comparable crop yields to specialized production systems: a meta-analysis. PLoS ONE 15, e0231840 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Franzluebbers, A. J. & Stuedemann, J. A. Soil physical responses to cattle grazing cover crops under conventional and no tillage in the Southern Piedmont USA. Soil Tillage Res. 100, 141–153 (2008).

    Article  Google Scholar 

  • 81.

    Tracy, B. F. & Zhang, Y. Soil compaction, corn yield response, and soil nutrient pool dynamics within an integrated crop-livestock system in Illinois. Crop Sci. 48, 1211–1218 (2008).

    CAS  Article  Google Scholar 

  • 82.

    Schmitt, J. Nematoides fitoparasitas e de vida livre como bioindicadores de qualidade do solo de um sistema de integração lavoura-pecuária (Universidade Federal de Santa Maria, 2019).

  • 83.

    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).

    ADS  CAS  Article  Google Scholar 

  • 84.

    Ingram, L. J. et al. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Sci. Soc. Am. J. 72, 939–948 (2008).

    ADS  CAS  Article  Google Scholar 

  • 85.

    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).

    Article  Google Scholar 

  • 86.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed  Article  Google Scholar 

  • 87.

    Noy-Meir, I. et al. Stability of grazing systems: an application of predator-prey graphs. J. Ecol. 63, 459–481 (1975).

    Article  Google Scholar 

  • 88.

    Franzluebbers, A. J. et al. Well-managed grazing systems: a forgotten hero of conservation. J. Soil Water Conserv. 67, 100A-104A (2012).

    Article  Google Scholar 

  • 89.

    Schuster, M. Z. et al. Grazing intensities affect weed seedling emergence and the seed bank in an integrated crop-livestock system. Agric. Ecosyst. Environ. 232, 232–239 (2016).

    Article  Google Scholar 

  • 90.

    Kunrath, T. R. et al. Sward height determines pasture production and animal performance in a long-term soybean-beef cattle integrated system. Agric. Syst. 177, 102716 (2020).

    Article  Google Scholar 

  • 91.

    Mott, G. O. Grazing pressure and the measurement of pasture production. In: Proceedings of the International Grassland Congress, pp. 606–611 (1960).

  • 92.

    Maraschin, G. E. et al. Native pasture, forage on offer and animal response. In: Proceedings of the international grassland congress, pp. 26–27 (1997).

  • 93.

    de Souza Filho, W. et al. Mitigation of enteric methane emissions through pasture management in integrated crop-livestock systems: trade-offs between animal performance and environmental impacts. J. Clean. Prod. 213, 968–975 (2019).

  • 94.

    Soussana, J.-F. & Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric. Ecosyst. Environ. 190, 9–17 (2014).

    CAS  Article  Google Scholar 

  • 95.

    Food and Agriculture Organization of the United Nations (FAO). Trade and markets: the FAO meat price index. http://www.fao.org/economic/est/est-commodities/meat/en/ (2020).

  • 96.

    Center for Advanced Studies on Applied Economics (CEPEA). Agricultural prices: Soybean. https://www.cepea.esalq.usp.br/en/indicator/soybean.aspx (2020).

  • 97.

    Center for Advanced Studies on Applied Economics (CEPEA). Agricultural prices: Cattle. https://www.cepea.esalq.usp.br/en/indicator/cattle.aspx (2020).


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web