in

Local knowledge as a tool for prospecting wild food plants: experiences in northeastern Brazil

  • 1.

    Kalle, R. et al. Gaining momentum: Popularization of Epilobium angustifolium as food and recreational tea on the Eastern edge of Europe. Appetite 150, 104638 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    FAO. Voluntary Guidelines for the Conservation and Sustainable Use of Crop Wild Relatives and Wild Food Plants. (Food and Agriculture Organization of the United Nations, 2017).

  • 3.

    Gold, K. & McBurney. Conservation of plant diversity for sustainable diets. in Sustainable diets and biodiversity: directions ad solutions for policy, research and action (eds. Burlingame, B. & Dernini, S.) 30–36 (FAO Headquarters, 2010).

  • 4.

    Soares, W. L. & de Porto, M. F. Estimating the social cost of pesticide use: An assessment from acute poisoning in Brazil. Ecol. Econ. 68, 2721–2728 (2009).

    Article  Google Scholar 

  • 5.

    Oliveira, B. P. T. & Ranieri, G. R. Narrativa midiática e difusão sobre Plantas Alimentícias Não Convencionais (PANC): Contribuições para avançar no debate. Cad. Agroecol. 13, 7 (2017).

    Google Scholar 

  • 6.

    de Assis, J. G. A., Galvão, R. F. M., de Castro, I. R. & de Melo, J. F. Plantas Alimentícias Não Convencionais na Bahia: uma rede em consolidação. Agriculturas 13, 16–20 (2016).

    Google Scholar 

  • 7.

    Kinupp, V. F. & Lorenzi, H. Plantas Alimentícias não Convencionais no Brasil: Guia de identificação, Aspectos Nutricionais e Receitas Ilustradas. (Instituto Plantarum, 2014).

  • 8.

    Jacob, M. C. M., de Medeiros, M. F. A. & Albuquerque, U. P. Biodiverse food plants in the semiarid region of Brazil have unknown potential: A systematic review. PLoS ONE 15, e0230936 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Pieroni, A. Evaluation of the cultural significance of wild food botanicals traditionally consumed in Northwestern tuscany, Italy. J. Ethnobiol. 21, 89–104 (2001).

    Google Scholar 

  • 10.

    Jacob, M. C. M. & Albuquerque, U. P. Biodiverse food plants: Which gaps do we need to address to promote sustainable diets?. Ethnobiol. Conserv. 9, 1–6 (2020).

    Google Scholar 

  • 11.

    Berkes, F., Colding, J. & Folke, C. Rediscovery of traditional ecological knowledge as adaptive management. Ecol. Appl. 10, 1251–1262 (2000).

    Article  Google Scholar 

  • 12.

    Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton University Press, Princeton, 1981).

    Google Scholar 

  • 13.

    Reyes-García, V. et al. Cultural transmission of ethnobotanical knowledge and skills: An empirical analysis from an Amerindian society. Evol. Hum. Behav. 30, 274–285 (2009).

    Article  Google Scholar 

  • 14.

    Ladio, A. H. & Lozada, M. Patterns of use and knowledge of wild edible plants in distinct ecological environments: A case study of a Mapuche community from northwestern Patagonia. Biodivers. Conserv. 13, 1153–1173 (2004).

    Article  Google Scholar 

  • 15.

    Menendez-baceta, G., Pardo-de-santayana, M., Aceituno-mata, L. & Reyes-garcía, V. Trends in wild food plants uses in Gorbeialdea (Basque Country). Appetite 112, 9–16 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Ayantunde, A. A., Briejer, M., Hiernaux, P., Udo, H. M. J. & Tabo, R. Botanical knowledge and its differentiation by age, gender and ethnicity in Southwestern Niger. Hum. Ecol. 36, 881–889 (2008).

    Article  Google Scholar 

  • 17.

    de Brito, C. C. et al. The use of different indicators for interpreting the local knowledge loss on medical plants. Braz. J. Pharmacogn. 27, 2 (2017).

    Article  Google Scholar 

  • 18.

    Ghorbani, A., Langenberger, G. & Sauerborn, J. A comparison of the wild food plant use knowledge of ethnic minorities in Naban River Watershed National Nature Reserve, Yunnan SW China. J. Ethnobiol. Ethnomed. 8, 17 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Kang, Y., Łuczaj, Ł, Kang, J. & Zhang, S. Wild food plants and wild edible fungi in two valleys of the Qinling Mountains (Shaanxi, central China). J. Ethnobiol. Ethnomed. 9, 26 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Nascimento, V. T., Lucena, R. F., Maciel, M. I. & Albuquerque, U. P. Knowledge and use of wild food plants in areas of dry seasonal forests in Brazil. Ecol. Food Nutr. 52, 317–343 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Torres-Avilez, W., Medeiros, P. M. D. & Albuquerque, U. P. Effect of gender on the knowledge of medicinal plants: Systematic review and meta-analysis. Evid.-Based Complement. Altern. Med. 2016, 6592363 (2016).

    Article  Google Scholar 

  • 22.

    Somnasang, P. & Moreno-Black, G. Knowing, gathering and eating: Knowledge and attitudes about wild food in an Isan village in Northeastern Thailand. J. Ethnobiol. 20, 197–216 (2000).

    Google Scholar 

  • 23.

    Cruz, M. P., Medeiros, P. M., Combariza, I. S., Peroni, N. & Albuquerque, U. P. ‘I eat the manofê so it is not forgotten’: Local perceptions and consumption of native wild edible plants from seasonal dry forests in Brazil. J. Ethnobiol. Ethnomed. 10, 45 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Gomes, D. L., dos Ferreira, R. P. S., da Santos, É. M. C., da Silva, R. R. V. & de Medeiros, P. M. Local criteria for the selection of wild food plants for consumption and sale in Alagoas, Brazil. Ethnobiol. Conserv. 9, 10 (2020).

    Google Scholar 

  • 25.

    Serrasolses, G. et al. A matter of taste: Local explanations for the consumption of wild food plants in the Catalan pyrenees and the Balearic Islands. Econ. Bot. 70, 176–189 (2016).

    Article  Google Scholar 

  • 26.

    Balemie, K. & Kebebew, F. Ethnobotanical study of wild edible plants in Derashe and Kucha Districts South Ethiopia. J. Ethnobiol. Ethnomed. 2, 53 (2014).

    Article  Google Scholar 

  • 27.

    Costa, J. M. S., Melo, Y. N. C. da S. & Navas, R. Agricultura familiar e agroecologia: diversidade na produção do assentamento Dom Helder Câmara. in Gestão dos ambientes nas práticas socioeconômicas (eds. Selva, V. S. F. et al.) 31–37 (Itacaiúnas, 2019).

  • 28.

    Cavalcanti, B. C., Rocha, R. & Barros, D. A. Desiring the city—the urban imaginary in rural collective settlements in a Brazilian submontane Atlantic forest reserve. Horizontes Antropológicos 3, 217–235 (2007).

    Google Scholar 

  • 29.

    Lopes, T. V., Cruz, R. R. & Silva, R. J. N. da. Produção agrícola em um assentamento de reforma agrária da zona da mata alagoana: uma análise do uso de agrotóxicos e a alternativa orgânica. in Gestão dos ambientes nas práticas socioeconômicas (eds. Selva, V. S. F. et al.) 88–94 (Itacaiúnas, 2019).

  • 30.

    Oliveira, J. R. P. M. & Pôrto, K. C. Composição, riqueza e padrões de distribuição das hepáticas (Marchantiophyta) epífitas da Estação Ecológica Murici, AL Brasil. Rev. Bras. Biociências 5, 1041–1043 (2007).

    Google Scholar 

  • 31.

    IBGE. Manual Técnico da Vegetação Brasileira. (1992).

  • 32.

    de Campos, L. Z., Albuquerque, U. P., Peroni, N. & Araújo, E. L. Do socioeconomic characteristics explain the knowledge and use of native food plants in semiarid environments in Northeastern Brazil?. J. Arid Environ. 115, 53–61 (2015).

    ADS  Article  Google Scholar 

  • 33.

    Nascimento, V. T., Pereira, H. C., Silva, A. S., Nunes, A. T. & Medeiros, P. M. Plantas alimentícias espontâneas conhecidas pelos moradores do Vau da Boa Esperança, município de Barreiras, oeste da Bahia, nordeste do Brasil. Ouricuri 5, 86–109 (2015).

    Google Scholar 

  • 34.

    Bhattarai, S., Chaudhary, R. P. & Taylor, R. S. L. Wild edible plants used by the people of Manang district, central Nepal wild edible. Ecol. Food Nutr. 48, 1–20 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Ladio, A. H. & Lozada, M. Edible wild plant use in a Mapuche community of northwestern Patagonia. Hum. Ecol. 28, 53–71 (2000).

    Article  Google Scholar 

  • 36.

    Sansanelli, S. & Tassoni, A. Wild food plants traditionally consumed in the area of Bologna (Emilia Romagna region, Italy ). J. Ethnobiol. Ethnomed. 10, 69 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Sousa, D. C. P., Soldati, G. T., Monteiro, J. M., De Sousa Araújo, T. A. & Albuquerque, U. P. Information retrieval during free listing is biased by memory: Evidence from medicinal plants. PLoS ONE 11, e0165838 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 38.

    Tabuti, J. R. S., Dhillion, S. S. & Lye, K. A. The status of wild food plants in Bulamogi County Uganda. Int. J. Food Sci. Nutr. 55, 485–498 (2004).

    PubMed  Article  CAS  Google Scholar 

  • 39.

    Hadjichambis, A. C. H. et al. Wild and semi-domesticated food plant consumption in seven circum-Mediterranean areas. Int. J. Food Sci. Nutr. 59, 383–414 (2008).

    PubMed  Article  Google Scholar 

  • 40.

    Pieroni, A. Gathered wild food plants in the upper valley of the Serchio River (Garfagnana) Central Italy. Econ. Bot. 53, 327–341 (1999).

    Article  Google Scholar 

  • 41.

    Thakur, D., Sharma, A. & Uniyal, S. K. Why they eat, what they eat: Patterns of wild edible plants consumption in a tribal area of Western Himalaya. J. Ethnobiol. Ethnomed. 13, 70 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Cruz-garcia, G. S. & Price, L. L. Ethnobotanical investigation of ‘wild’ food plants used by rice farmers in Kalasin Northeast Thailand. J. Ethnobiol. Ethnomed. 7, 33 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Ogle, B. M. & Grivetti, L. E. Legacy of the chameleon: Edible wild plants in the kingdom of Swaziland, southern Africa. A cultural, ecological, nutritional study. Part iv—nutritional analysis and conclusions. Ecol. Food Nutr. 17, 41–64 (1985).

    Article  Google Scholar 

  • 44.

    Price, L. L. Wild plant food in agricultural environments: A study of occurrence, management, and gathering rights in Northeast Thailand. Hum. Organ. 56, 2019–2221 (1997).

    Article  Google Scholar 

  • 45.

    Ribeiro, J. P. O. et al. Can ecological apparency explain the use of plant species in the semi-arid depression of Northeastern Brazil?. Acta Bot. Brasilica 28, 476–483 (2014).

    Article  Google Scholar 

  • 46.

    Soldati, G. T., Medeiros, P. M., Duque-Brasil, R., Coelho, F. M. G. & Albuquerque, U. P. How do people select plants for use? Matching the ecological apparency hypothesis with optimal foraging theory. Environ. Dev. Sustain. 19, 2143–2161 (2017).

    Article  Google Scholar 

  • 47.

    Bezerra, J. E. F., Lederman, I. E., Junior, J. F. da S. & Proença, C. E. B. Araçá. in Frutas Nativas da Região Centro-Oste do Brasil (eds. Vieira, R. F., Costa, T. da S. A., Silva, D. B. da, Ferreira, F. R. & Sano, S. M.) 42–62 (Embrapa Recursos Genéticos e Biotecnologia, 2006). doi:https://doi.org/10.13140/2.1.2141.1206.

  • 48.

    Peralta-Bohórquezo, A. F. P., Parada, F., Quijano, C. E. & Pino, J. A. Analysis of volatile compounds of sour guava (psidium guineense swartz) fruit. J. Essent. Oil Res. 22, 493–498 (2010).

    Article  Google Scholar 

  • 49.

    Damiani, C. et al. Characterization of fruits from the savanna: Araça (Psidium guinnensis Sw.) and Marolo (Annona crassiflora Mart.). Cienc. e Tecnol. Aliment. 31, 723–729 (2011).

    Article  Google Scholar 

  • 50.

    Schmeda-Hirschmann, G., Feresin, G., Tapia, A., Hilgert, N. & Theoduloz, C. Proximate composition and free radical scavenging activity of edible fruits from the Argentinian Yungas. J. Sci. Food Agric. 85, 1357–1364 (2005).

    Article  CAS  Google Scholar 

  • 51.

    González, A., Ramírez, M. & Sánchez, P. N. Estudio fitoquímico y actividad antibacterial de Psidium guineense Sw (choba) frente a Streptococcus mutans, agente causal de caries dentales. Rev. Cuba. Plantas Med. 10, 11 (2005).

    Google Scholar 

  • 52.

    Santos, M. A. C., Queiróz, M. A., Bispo, J. S. & Dantas, B. F. Seed germination of Brazilian guava (Psidium guineense Swartz). J. Seed Sci. 37, 214–221 (2015).

    Article  Google Scholar 

  • 53.

    Keeler, C. Genipa Americana in native tropical medicine. Dermatol. Trop. Ecol. Geogr. 3, 104–107 (1964).

    Google Scholar 

  • 54.

    Figueiredo, R. W., Maia, G. A., Holanda, L. F. F. & Monteiro, J. C. F. Características físicas e químicas do jenipapo. Pesqui. Agropecuária Bras. 21, 421–428 (1986).

    Google Scholar 

  • 55.

    Conceição, A. O., Rossi, M. H., Oliveira, F. F., Takser, L. & Lafond, J. Genipa americana (Rubiaceae) fruit extract affects mitogen-activated protein kinase cell pathways in human trophoblast-derived bewo cells: Implications for placental development. J. Med. Food 14, 483–494 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 56.

    Hamacek, F. R., Moreira, A. V. B., Martino, H. S. D., Ribeiro, S. M. R. & Pinheiro-Santana, H. M. Valor nutricional, caracterização Física e físico-química de jenipapo (Genipa Americana L.) do cerrado de Minas Gerais. Aliment. e Nutr. 24, 73–77 (2013).

    Google Scholar 

  • 57.

    Omena, C. M. B. et al. Antioxidant, anti-acetylcholinesterase and cytotoxic activities of ethanol extracts of peel, pulp and seeds of exotic Brazilian fruits. Antioxidant, anti-acetylcholinesterase and cytotoxic activities in fruits. Food Res. Int. 49, 334–344 (2012).

    Article  CAS  Google Scholar 

  • 58.

    Porto, R. G. C. L. et al. Chemical composition and antioxidant activity of Genipa Americana L. (Jenipapo) of the Brazilian Cerrado. J. Agric. Environ. Sci. 3, 51–61 (2014).

    Google Scholar 

  • 59.

    Dickson, L. et al. Main human urinary metabolites after genipap (Genipa americana L.) juice intake. Nutrients 10, 2 (2018).

    Article  CAS  Google Scholar 

  • 60.

    Alves, L. F. & Ming, L. C. Chemistry and pharmacology of some plants mentioned in the letter of Pero Vaz de Caminha. Ethnobiol. Conserv. 4, 1–15 (2015).

    Google Scholar 

  • 61.

    Li, Z. et al. Genipin inhibits the growth of human bladder cancer cells via inactivation of PI3k/AkT signaling. Oncol. Lett. 15, 2619–2624 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Shanmugam, M. K. et al. Potential role of genipin in cancer therapy. Pharmacol. Res. 133, 195–200 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 63.

    Brauch, J. E., Zapata-Porras, S. P., Buchweitz, M., Aschoff, J. K. & Carle, R. Jagua blue derived from Genipa americana L. fruit: A natural alternative to commonly used blue food colorants?. Food Res. Int. 89, 391–398 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 64.

    Souza, A. F., Andrade, A. C. S., Ramos, F. N. & Loureiro, M. B. Ecophysiology and morphology of seed germination of the neotropical lowland tree Genipa americana (Rubiaceae). J. Trop. Ecol. 15, 667–680 (1999).

    Article  Google Scholar 

  • 65.

    Oliveira, L. M., Oliveira Silva, E., Bruno, R. & Alves, E. U. Periods and dry environments in the seeds quality of Genipa americana L. Semin. Ciencias Agrar. 32, 495–502 (2011).

    Article  Google Scholar 

  • 66.

    Jackix, E. A., Monteiro, E. B., Raposo, H. F., Vanzela, E. C. & Amaya-Farfán, J. Taioba (xanthosoma sagittifolium) leaves: Nutrient composition and physiological effects on healthy rats. J. Food Sci. 78, 1929–1934 (2013).

    Article  CAS  Google Scholar 

  • 67.

    Akonor, P. T., Tortoe, C. & Buckman, E. S. Evaluation of cocoyam-wheat composite flour in pastry products based on proximate composition, physicochemical, functional, and sensory properties. J. Culin. Sci. Technol. 16, 52–65 (2018).

    Article  Google Scholar 

  • 68.

    Falade, K. O. & Okafor, C. A. Physicochemical properties of five cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) starches. Food Hydrocoll. 30, 173–181 (2013).

    Article  CAS  Google Scholar 

  • 69.

    Falade, K. O. & Okafor, C. A. Physical, functional, and pasting properties of flours from corms of two Cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) cultivars. J. Food Sci. Technol. 52, 3440–3448 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 70.

    Nishanthini, A. & Mohan, V. R. Antioxidant activites of Xanthosoma sagittifolium Schott using various in vitro assay models. Asian Pac. J. Trop. Biomed. 2, S1701–S1706 (2012).

    Article  Google Scholar 

  • 71.

    Pinto, N. A. V. D., Fernandes, S. M., Thé, P. M. P. & Carvalho, V. D. Variabilidade da composição centesimal, vitamina C, ferro e cálcio de partes da folha de Taioba (Xanthosoma sagittifolium Schott). Rev. Bras. Agrociência 7, 205–208 (2001).

    Google Scholar 

  • 72.

    Oliveira, G. L., Andrade, L. H. C. & Oliveira, A. F. M. Xanthosoma sagittifolium and Laportea aestuans: Species used to prevent osteoporosis in Brazilian traditional medicine. Pharm. Biol. 50, 930–932 (2012).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 73.

    Jackix, E. A., Monteiro, E. B., Raposo, H. F. & Amaya-Farfán, J. Cholesterol reducing and bile-acid binding properties of taioba (Xanthosoma sagittifolium) leaf in rats fed a high-fat diet. Food Res. Int. 51, 886–891 (2013).

    Article  CAS  Google Scholar 

  • 74.

    Arruda, S. F., Souza, E. M. T. & Siqueira, E. M. A. Carotenoids from Malanga (Xanthosoma sagittifolium) leaves protect cells against oxidative stress in rats. Int. J. Vitam. Nutr. Res. 75, 161–168 (2005).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 75.

    Chai, W. & Liebman, M. Effect of different cooking methods on vegetable oxalate content. J. Agric. Food Chem. 53, 3027–3030 (2005).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 76.

    de Carvalho, E. F. & Cordeiro, J. A. D. Um método alternativo e eficiente de propagação vegetativa de inhame (Colocasia esculenta (L.) SCHOTT) e de taioba (Xanthosoma sagittifolium (L) SCHOOT). Acta Amaz. 20, 11–18 (1990).

    Article  Google Scholar 

  • 77.

    Suja, G., John, K. S. & Sundaresan, S. Potential of tannia (Xanthosoma sagittifolium (L.) Schott.) for organic production. J. Root Crop. 35, 36–40 (2009).

    Google Scholar 

  • 78.

    Ramos-Escudero, F., Santos-Buelga, C., Pérez-Alonso, J. J., Yáñez, J. A. & Dueñas, M. HPLC-DAD-ESI/MS identification of anthocyanins in Dioscorea trifida L. yam tubers (purple sachapapa). Eur. Food Res. Technol. 230, 745–752 (2010).

    Article  CAS  Google Scholar 

  • 79.

    Bousalem, M. et al. Evidence of diploidy in the wild Amerindian yam, a putative progenitor of the endangered species dioscorea trifida (Dioscoreaceae). Genome 53, 371–383 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 80.

    Nascimento, W. F., Rodrigues, J. F., Koehler, S., Gepts, P. & Veasey, E. A. Spatially structured genetic diversity of the Amerindian yam (Dioscorea trifida L.) assessed by SSR and ISSR markers in Southern Brazil. Genet. Resour. Crop Evol. 60, 2405–2420 (2013).

    Article  Google Scholar 

  • 81.

    Rached, L. B., de Vizcarrondo, C. A., Rincón, A. M. & Padilla, F. Evaluación de harinas y almidones de mapuey (Dioscorea trifida), variedades blanco y morado. Arch. Latinoam. Nutr. 56, 2 (2006).

    Google Scholar 

  • 82.

    Morada, D. E. S. & Yáñez, J. A. Antocianinas, polifenoles, actividad anti-oxidante de sachapapa morada (Dioscorea trifida L.) y evaluación de lipoperoxidación en suero humano. Rev. la Soc. Química del Perú 76, 61–72 (2010).

    Google Scholar 

  • 83.

    Mollica, J. Q. et al. Anti-inflammatory activity of American yam Dioscorea trifida L.f. in food allergy induced by ovalbumin in mice. J. Funct. Foods 5, 1975–1984 (2013).

    Article  CAS  Google Scholar 

  • 84.

    Beyerlein, P., Mendes, A. M. S. & Pereira, H. S. Floral phenology, seed germination and hybrid plants of the amerindian yam (Dioscorea trifida). Acta Amaz. 49, 167–172 (2019).

    Article  Google Scholar 

  • 85.

    N’Danikou, S., Achigan-dako, E. G. & Wong, J. L. G. Eliciting local values of wild edible plants in southern Bénin to identify priority species for conservation. Econ. Bot. 65, 381–395 (2011).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)