in

Long-term data reveal unimodal responses of ground beetle abundance to precipitation and land use but no changes in taxonomic and functional diversity

  • 1.

    Wilson, E. O. The little things that run the world (The importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).

    Article 

    Google Scholar 

  • 2.

    Catalogue of Life. Catalogue of life: 2018 annual checklist. http://www.catalogueoflife.org/annual-checklist/2018/info/ac (2018).

  • 3.

    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Nielsen, T. F., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is less: Net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).

    Article 

    Google Scholar 

  • 7.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. PNAS 118, 1–10 (2021).

    Google Scholar 

  • 11.

    Welti, E. A. R., Roeder, K. A., de Beurs, K. M., Joern, A. & Kaspari, M. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc. Natl. Acad. Sci. U. S. A. 117, 7271–7275 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. U. S. A. 110, 19456 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Rada, S. et al. Protected areas do not mitigate biodiversity declines: A case study on butterflies. Divers. Distrib. 25, 217–224 (2019).

    Article 

    Google Scholar 

  • 16.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Magurran, A. E., Dornelas, M., Moyes, F. & Henderson, P. A. Temporal β diversity—A macroecological perspective. Glob. Ecol. Biogeogr. 28, 1949–1960 (2019).

    Article 

    Google Scholar 

  • 18.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Múrria, C., Iturrarte, G. & Gutiérrez-Cánovas, C. A trait space at an overarching scale yields more conclusive macroecological patterns of functional diversity. Glob. Ecol. Biogeogr. 29, 1729–1742 (2020).

    Article 

    Google Scholar 

  • 20.

    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).

    Article 

    Google Scholar 

  • 21.

    Schmera, D., Heino, J., Podani, J., Erős, T. & Dolédec, S. Functional diversity: A review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787, 27–44 (2017).

    Article 

    Google Scholar 

  • 22.

    Frainer, A., McKie, B. G. & Malmqvist, B. When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. J. Anim. Ecol. 83, 460–469 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).

    Article 

    Google Scholar 

  • 25.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).

    Article 

    Google Scholar 

  • 28.

    Baranov, V., Jourdan, J., Pilotto, F., Wagner, R. & Haase, P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. 34, 1241–1251 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Halsch, C. A. et al. Insects and recent climate change. PNAS 118, 1–9 (2021).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. PNAS 118, 1–6 (2021).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Jourdan, J., Baranov, V., Wagner, R., Plath, M. & Haase, P. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. J. Anim. Ecol. 88, 1498–1509 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).

    Article 

    Google Scholar 

  • 34.

    Habel, J. C., Ulrich, W., Biburger, N., Seibold, S. & Schmitt, T. Agricultural intensification drives butterfly decline. Insect Conserv. Divers. 12, 289–295 (2019).

    Google Scholar 

  • 35.

    Januschke, K. & Verdonschot, R. C. M. Effects of river restoration on riparian ground beetles (Coleoptera: Carabidae) in Europe. Hydrobiologia 769, 93–104 (2016).

    Article 

    Google Scholar 

  • 36.

    Koivula, M. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100, 287–317 (2011).

    Article 

    Google Scholar 

  • 37.

    Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org—a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).

  • 38.

    Kotze, D. J. et al. Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 100, 55–148 (2011).

    Article 

    Google Scholar 

  • 39.

    Rainio, J. & Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 12, 487–506 (2003).

    Article 

    Google Scholar 

  • 40.

    Pozsgai, G., Baird, J., Littlewood, N. A., Pakeman, R. J. & Young, M. R. Long-term changes in ground beetle (Coleoptera: Carabidae) assemblages in Scotland. Ecol. Entomol. 41, 157–167 (2016).

    Article 

    Google Scholar 

  • 41.

    Jambrošić, V. Ž & Šerić, J. L. Long term changes (1990–2016) in carabid beetle assemblages (Coleoptera: Carabidae) in protected forests on Dinaric Karst on Mountain Risnjak, Croatia. EJE 117, 56–67 (2020).

    Google Scholar 

  • 42.

    Marrec, R. et al. Multiscale drivers of carabid beetle (Coleoptera: Carabidae) assemblages in small European woodlands. Glob. Ecol. Biogeogr. 30, 165–182 (2021).

    Article 

    Google Scholar 

  • 43.

    Ribera, I., Dolédec, S., Downie, I. S. & Foster, G. N. Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 1112–1129 (2001).

    Article 

    Google Scholar 

  • 44.

    Gobbi, M. & Fontaneto, D. Biodiversity of ground beetles (Coleoptera: Carabidae) in different habitats of the Italian Po lowland. Agric. Ecosyst. Environ. 127, 273–276 (2008).

    Article 

    Google Scholar 

  • 45.

    Cajaiba, R. L. et al. How informative is the response of Ground Beetles’ (Coleoptera: Carabidae) assemblages to anthropogenic land use changes? Insights for ecological status assessments from a case study in the Neotropics. Sci. Total Environ. 636, 1219–1227 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Baulechner, D., Diekötter, T., Wolters, V. & Jauker, F. Converting arable land into flowering fields changes functional and phylogenetic community structure in ground beetles. Biol. Cons. 231, 51–58 (2019).

    Article 

    Google Scholar 

  • 47.

    Hallmann, C. A. et al. Declining abundance of beetles, moths and caddisflies in the Netherlands. Insect Conserv. Divers. 13, 127–139 (2020).

    Article 

    Google Scholar 

  • 48.

    Brooks, D. R. et al. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Ecol. 49, 1009–1019 (2012).

    Article 

    Google Scholar 

  • 49.

    Kotze, D. J. & O’Hara, R. B. Species decline—but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135, 138–148 (2003).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Homburg, K. et al. Where have all the beetles gone? Long-term study reveals carabid species decline in a nature reserve in Northern Germany. Insect Conserv. Divers. 12, 268–277 (2019).

    Google Scholar 

  • 51.

    Thiele, H. U. Carabid Beetles in their Environments: A Study on Habitat Selection by Adaptations in Physiology and Behaviour. (Springer, 1977). https://doi.org/10.1007/978-3-642-81154-8.

  • 52.

    Hengeveld, R. Dynamics of Dutch Beetle Species During the Twentieth Century (Coleoptera, Carabidae). J. Biogeogr. 12, 389–411 (1985).

    Article 

    Google Scholar 

  • 53.

    Engel, J. et al. Pitfall trap sampling bias depends on body mass, temperature, and trap number: Insights from an individual-based model. Ecosphere 8, e01790 (2017).

    Article 

    Google Scholar 

  • 54.

    Eyre, M. D., Rushton, S. P., Luff, M. L. & Telfer, M. G. Investigating the relationships between the distribution of British ground beetle species (Coleoptera, Carabidae) and temperature, precipitation and altitude. J. Biogeogr. 32, 973–983 (2005).

    Article 

    Google Scholar 

  • 55.

    Paetzold, A., Schubert, C. J. & Tockner, K. Aquatic terrestrial linkages along a braided-river: Riparian arthropods feeding on aquatic insects. Ecosystems 8, 748–759 (2005).

    Article 

    Google Scholar 

  • 56.

    Van Looy, K., Vanacker, S., Jochems, H., de Blust, G. & Dufrêne, M. Ground beetle habitat templets and riverbank integrity. River Res. Appl. 21, 1133–1146 (2005).

    Article 

    Google Scholar 

  • 57.

    Lambeets, K., Vandegehuchte, M. L., Maelfait, J.-P. & Bonte, D. Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J. Anim. Ecol. 77, 1162–1174 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Kotze, D. J., Niemelä, J., O’Hara, R. B. & Turin, H. Testing abundance-range size relationships in European carabid beetles (Coleoptera, Carabidae). Ecography 26, 553–566 (2003).

    Article 

    Google Scholar 

  • 59.

    Barber, H. S. Traps for cave-inhabiting insects. J. Elisha Mitchell Sci. Soc. 46, 259–266 (1931).

    Google Scholar 

  • 60.

    Dunger, W. Praktische Erfahrungen mit Bodenfallen. Entomologische Nachrichten 7, 41–46 (1963).

    Google Scholar 

  • 61.

    Trautner, J. Handfänge als effektive und vergleichbare Methode zur Laufkäfer-Erfassung an Fließgewässern-Ergebnisse eines Tests an der Aich. Angewandte Carabidologie Supplement 1, 139–144 (1999).

    Google Scholar 

  • 62.

    Trautner, J. Laufkäfer – Methoden der Bestandsaufnahme und Hinweise für die Auswertung bei Naturschutz- und Eingriffsplanungen. in Arten- und Biotopschutz in der Planung: Methodische Standards zur Erfassung von Tierartengruppen (ed. Trautner, J.) 145–162 (1992).

  • 63.

    Linke, S., Bailey, R. C. & Schwindt, J. Temporal variability of stream bioassessments using benthic macroinvertebrates. Freshw. Biol. 42, 575–584 (1999).

    Article 

    Google Scholar 

  • 64.

    Albrecht, L. Grundlagen, Ziele und Methodik der waldökologischen Forschung in Naturreservaten. vol. 1 (1990).

  • 65.

    Renner, K. Faunistisch-ökologische Untersuchungen der Käferfauna pflanzensoziologisch unterschiedlicher Biotope im Evessell-Buch bei Bielefeld-Sennestadt. Ber. Naturw. V. Bielefeld 145–176 (1980).

  • 66.

    Müller-Motzfeld, G. Die Käfer Mitteleuropas. vol. 2 (Springer Spektrum, 2004).

  • 67.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 68.

    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication. (University of Illinois Press, 1949).

  • 69.

    Simpson, E. H. Measurement of diversity. Nature 163, 688 (1949).

    ADS 
    MATH 
    Article 

    Google Scholar 

  • 70.

    Pielou, E. C. Mathematical Ecology. (Wiley, 1977).

  • 71.

    Smith, B. & Wilson, J. B. A consumer’s guide to Evenness indices. Oikos 76, 70–82 (1996).

    Article 

    Google Scholar 

  • 72.

    Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).

    Article 

    Google Scholar 

  • 73.

    Schmera, D., Podani, J., Heino, J., Erős, T. & Poff, N. L. A proposed unified terminology of species traits in stream ecology. Freshw. Sci. 34, 823–830 (2015).

    Article 

    Google Scholar 

  • 74.

    Villéger, S., Grenouillet, G. & Brosse, S. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Glob. Ecol. Biogeogr. 22, 671–681 (2013).

    Article 

    Google Scholar 

  • 75.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).

    Article 

    Google Scholar 

  • 77.

    Pakeman, R. J. Functional trait metrics are sensitive to the completeness of the species’ trait data?. Methods Ecol. Evol. 5, 9–15 (2014).

    Article 

    Google Scholar 

  • 78.

    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Chevene, F., Doléadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).

    Article 

    Google Scholar 

  • 80.

    Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).

    Article 

    Google Scholar 

  • 81.

    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, 1–12 (2008).

    Article 

    Google Scholar 

  • 82.

    Jourdan, J. et al. Effects of changing climate on European stream invertebrate communities: A long-term data analysis. Sci. Total Environ. 621, 588–599 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Büttner, G. Corine land cover and land cover change products. in Land Use and Land Cover Mapping in Europe: Practices & Trends (eds. Manakos, I. & Braun, M.) 55–74 (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-007-7969-3_5.

  • 84.

    Erős, T., Czeglédi, I., Tóth, R. & Schmera, D. Multiple stressor effects on alpha, beta and zeta diversity of riverine fish. Sci. Total Environ. 748, 141407 (2020).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 85.

    Oksanen, J. et al. Vegan: Community ecology package. https://CRAN.R-project.org/package=vegan (2019).

  • 86.

    Sanders, H. L. Marine benthic diversity: A comparative study. Am. Nat. 102, 243–282 (1968).

    Article 

    Google Scholar 

  • 87.

    Maire, A., Thierry, E., Viechtbauer, W. & Daufresne, M. Poleward shift in large-river fish communities detected with a novel meta-analysis framework. Freshw. Biol. 64, 1143–1156 (2019).

    Article 

    Google Scholar 

  • 88.

    R Development Core Team. R: A language and environment for statistical computing. R Foundation For Statistical Computing, Vienna, Austria https://www.r-project.org/ (2019).

  • 89.

    Lahti, L. & Shetty, S. Microbiome R package. http://microbiome.github.io (2012).

  • 90.

    Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. https://cran.r-project.org/web/packages/FD/citation.html (2014).

  • 91.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article 

    Google Scholar 

  • 92.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Development Core Team. Nlme: linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme (2020).

  • 93.

    Boscaini, A., Franceschini, A. & Maiolini, B. River ecotones: Carabid beetles as a tool for quality assessment. Hydrobiologia 422, 173–181 (2000).

    Article 

    Google Scholar 

  • 94.

    Magura, T., Lövei, G. L. & Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages?. Glob. Ecol. Biogeogr. 19, 16–26 (2010).

    Article 

    Google Scholar 

  • 95.

    Kędzior, R., Szwalec, A., Mundała, P. & Skalski, T. Ground beetle (Coleoptera, Carabidae) life history traits as indicators of habitat recovering processes in postindustrial areas. Ecol. Eng. 142, 105615 (2020).

    Article 

    Google Scholar 

  • 96.

    Post, D. M. The long and short of food-chain length. Trends Ecol. Evol. 17, 269–277 (2002).

    Article 

    Google Scholar 

  • 97.

    Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Skarbek, C. J., Kobel-Lamparski, A. & Dormann, C. F. Trends in monthly abundance and species richness of carabids over 33 years at the Kaiserstuhl, southwest Germany. Basic Appl. Ecol. 50, 107–118 (2021).

    Article 

    Google Scholar 

  • 99.

    Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).

    Article 

    Google Scholar 

  • 100.

    Prather, R. M. & Kaspari, M. Plants regulate grassland arthropod communities through biomass, quality, and habitat heterogeneity. Ecosphere 10, e02909 (2019).

    Article 

    Google Scholar 

  • 101.

    Desender, K., Dekoninck, W., Dufrêne, M. & Maes, D. Changes in the distribution of carabid beetles in Belgium revisited: Have we halted the diversity loss?. Biol. Cons. 143, 1549–1557 (2010).

    Article 

    Google Scholar 

  • 102.

    Haase, P. et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Making the case for hydrogen in a zero-carbon economy

    Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe