Brommer, J. E., Pietiäinen, H. & Kolunen, H. Reproduction and survival in a variable environment: Ural owls (Strix uralensis) and the three-year vole cycle. Auk 119, 544–550. https://doi.org/10.1642/0004-8038(2002)119[0544:rasiav]2.0.co;2 (2002).
Google Scholar
Begon, M., Townsend, C. R. & Harper, J. L. Ecology, Individuals, Populations and Communities 4th edn. (Blackwell, 2006).
Chang, A. M. & Wiebe, K. L. Body condition in snowy owls wintering on the prairies is greater in females and older individuals and may contribute to sex-biased mortality. Auk 133, 738–746. https://doi.org/10.1642/auk-16-60.1 (2016).
Google Scholar
McLean, N., van der Jeugd, H. P. & van de Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE 13, e0192401. https://doi.org/10.1371/journal.pone.0192401 (2018).
Google Scholar
McLean, N. M., van der Jeugd, H. P., van Turnhout, C. A. M., Lefcheck, J. S. & van de Pol, M. Reduced avian body condition due to global warming has little reproductive or population consequences. Oikos 129, 714–730. https://doi.org/10.1111/oik.06802 (2020).
Google Scholar
Aubry, L. M. et al. Climate change, phenology, and habitat degradation: Drivers of gosling body condition and juvenile survival in lesser snow geese. Glob. Change Biol. 19, 149–160. https://doi.org/10.1111/gcb.12013 (2013).
Google Scholar
Gardner, J. L., Amano, T., Sutherland, W. J., Clayton, M. & Peters, A. Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology 97, 786–795. https://doi.org/10.1890/15-0642.1 (2016).
Google Scholar
Newton, I. Population Limitation in Birds (Academic Press, 1998).
Dunn, P. O. & Møller, A. P. Effects of Climate Change on Birds 2nd edn. (Oxford University Press, 2019).
Google Scholar
Crossin, G. T. et al. A carryover effect of migration underlies individual variation in reproductive readiness and extreme egg size dimorphism in Macaroni penguins. Am. Nat. 176, 357–366. https://doi.org/10.1086/655223 (2010).
Google Scholar
Clausen, K. K., Madsen, J. & Tombre, I. M. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS ONE 10(7), e0132312. https://doi.org/10.1371/journal.pone.0132312 (2015).
Google Scholar
Selonen, V., Wistbacka, R. & Korpimäki, E. Food abundance and weather modify reproduction of two arboreal squirrel species. J. Mammal. 97, 1376–1384. https://doi.org/10.1093/jmammal/gyw096 (2016).
Google Scholar
Harrison, X. A., Blount, J. D., Inger, R., Norris, D. R. & Bearhop, S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4–18. https://doi.org/10.1111/j.1365-2656.2010.01740.x (2011).
Google Scholar
O’Connor, C. M., Norris, D. R., Crossin, G. T. & Cooke, S. J. Biological carryover effects: Linking common concepts and mechanisms in ecology and evolution. Ecosphere 5, 1–11. https://doi.org/10.1890/es13-00388.1 (2014).
Google Scholar
Montreuil-Spencer, C., Schoenemann, K., Lendvai, A. Z. & Bonier, F. Winter corticosterone and body condition predict breeding investment in a nonmigratory bird. Behav. Ecol. 30, 1642–1652. https://doi.org/10.1093/beheco/arz129 (2019).
Google Scholar
Korpimäki, E. Body mass of breeding Tengmalm’s owls Aegolius funereus: Seasonal, between-year, site and age-related variation. Ornis Scand. 21, 169–178. https://doi.org/10.2307/3676776 (1990).
Google Scholar
Dijkstra, C., Daan, S., Meijer, T., Cave, A. J. & Foppen, R. P. B. Daily and seasonal-variations in body-mass of the kestrel in relation to food availability and reproduction. Ardea 76, 127–140 (1988).
Pietiäinen, H. & Kolunen, H. Female body condition and breeding of the Ural owl Strix uralensis. Funct. Ecol. 7, 726–735. https://doi.org/10.2307/2390195 (1993).
Google Scholar
Wijnandts, H. Ecological energetics of the long-eared owl (Asio otus). Ardea 72, 1–92 (1984).
Korpimäki, E. & Hakkarainen, H. Fluctuating food supply affects the cluch size of Tengmalm’s owl independent of laying date. Oecologia 85, 543–552 (1991).
Google Scholar
Korpimäki, E. & Wiehn, J. Clutch size of kestrels: Seasonal decline and experimental evidence for food limitation under fluctuating food conditions. Oikos 83, 259–272. https://doi.org/10.2307/3546837 (1998).
Google Scholar
Pietiäinen, H. Seasonal and individual variation in the production of offspring in the Ural owl Strix uralensis. J. Anim. Ecol. 58, 905–920. https://doi.org/10.2307/5132 (1989).
Google Scholar
Wellicome, T. I. Effects of food on reproduction in burrowing owls (Athene cunicularia) during three stages of the breeding season (Ph.D. dissertation). (University of Alberta, 2000).
Ilmonen, P. et al. Parental effort and blood parasitism in Tengmalm’s owl: Effects of natural and experimental variation in food abundance. Oikos 86, 79–86. https://doi.org/10.2307/3546571 (1999).
Google Scholar
Santangeli, A., Hakkarainen, H., Laaksonen, T. & Korpimäki, E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim. Behav. 83, 1115–1123. https://doi.org/10.1016/j.anbehav.2012.02.002 (2012).
Google Scholar
Griebel, R. L. & Savidge, J. A. Factors related to body condition of nestling burrowing owls in Buffalo Gap National Grassland, South Dakota. Wilson Bull. 115, 477–480. https://doi.org/10.1676/02-094 (2003).
Google Scholar
Valkama, J., Korpimäki, E., Holm, A. & Hakkarainen, H. Hatching asynchrony and brood reduction in Tengmalm’s owl Aegolius funereus: The role of temporal and spatial variation in food abundance. Oecologia 133, 334–341. https://doi.org/10.1007/s00442-002-1033-2 (2002).
Google Scholar
König, C. & Weick, F. Owls of the World 2nd edn. (Yale University Press, 2008).
Mikkola, H. Owls of Europe (Poyser, 1983).
Korpimäki, E. On the Ecology and Biology of Tengmalm’s Owl (Aegolius funereus) in Southern Ostrobothnia and Soumenselkä, Western Finland Vol. 13, 1–84 (University of Oulu, 1981).
Korpimäki, E. Diet of breeding Tengmalm’s owls Aegolius funereus: Long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 65, 21–30 (1988).
Korpimäki, E. & Hakkarainen, H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator (Cambridge University Press, 2012).
Google Scholar
Kouba, M., Bartoš, L., Šindelář, J. & Šťastný, K. Alloparental care and adoption in Tengmalm’s owl (Aegolius funereus). J. Ornithol. 158, 185–191. https://doi.org/10.1007/s10336-016-1381-z (2017).
Google Scholar
Eldegard, K. & Sonerud, G. A. Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm’s owl. Behav. Ecol. Sociobiol. 64, 815–826 (2010).
Google Scholar
Eldegard, K. & Sonerud, G. A. Sex roles during post-fledging care in birds: Female Tengmalm’s owls contribute little to food provisioning. J. Ornithol. 153, 385–398. https://doi.org/10.1007/s10336-011-0753-7 (2012).
Google Scholar
Kouba, M., Bartoš, L. & Šťastný, K. Differential movement patterns of juvenile Tengmalm’s owls (Aegolius funereus) during the post-fledging dependence period in two years with contrasting prey abundance. PLoS ONE 8(7), e67034. https://doi.org/10.1371/journal.pone.0067034 (2013).
Google Scholar
Korpimäki, E. Fluctuating food abundance determines the lifetime reproductive success of male Tengmalm’s owls. J. Anim. Ecol. 61, 103–111 (1992).
Google Scholar
Kouba, M., Bartoš, L., Korpimäki, E. & Zárybnická, M. Factors affecting the duration of nestling period and fledging order in Tengmalm’s owl (Aegolius funereus): Effect of wing length and hatching sequence. PLoS ONE 10(3), e0121641. https://doi.org/10.1371/journal.pone.0121641 (2015).
Google Scholar
Björklund, H., Saurola, P. & Valkama, J. Petolintuvuosi 2019 oli kohtalainen (Summary: Breeding and population trends of common raptors and owls in Finland in 2019). Yearb. Linnut Mag. 2019, 44–59 (2020).
Kouba, M., Bartoš, L., Bartošová, J., Hongisto, K. & Korpimäki, E. Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm’s owls in the boreal forest. Sci. Rep. 10, 20429. https://doi.org/10.1038/s41598-41020-77531-y (2020).
Google Scholar
Ferrero, J. J., Grande, J. M. & Negro, J. J. Copulation behavior of a potentially double-brooded bird of prey, the black-winged kite (Elanus caeruleus). J. Raptor Res. 37, 1–7 (2003).
Sergio, F. From individual behaviour to population pattern: Weather-dependent foraging and breeding performance in black kites. Anim. Behav. 66, 1109–1117. https://doi.org/10.1006/anbe.2003.2303 (2003).
Google Scholar
Korpimäki, E. Effects of age on breeding performance of Tengmalm’s owl Aegolius funereus in western Finland. Ornis Scand. 19, 21–26 (1988).
Google Scholar
Laaksonen, T., Korpimäki, E. & Hakkarainen, H. Interactive effects of parental age and environmental variation on the breeding performance of Tengmalm’s owls. J. Anim. Ecol. 71, 23–31. https://doi.org/10.1046/j.0021-8790.2001.00570.x (2002).
Google Scholar
Korpimäki, E. Highlights from a long-term study of Tengmalm’s owls: Cyclic fluctuations in vole abundance govern mating systems, population dynamics and demography. Brit. Birds 113, 316–333 (2020).
Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).
Google Scholar
Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B-Biol. Sci. 272, 193–202 (2005).
Google Scholar
Huitu, O., Norrdahl, K. & Korpimäki, E. Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia 135, 209–220. https://doi.org/10.1007/s00442-002-1171-6 (2003).
Google Scholar
Schreiber-Gregory, D. N. & Jackson, H. M. Multicollinearity: What is it, why should we care, and how can it be controlled. In Proc. SAS R Global Forum 2017, Conference Paper 1404 (2017).
Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data (Springer, 2007).
Google Scholar
Tao, J., Littel, R., Patetta, M., Truxillo, C. & Wolfinger, R. Mixed Model Analyses Using the SAS System Course Notes (SAS Institute Inc., 2002).
Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretical Approach (Springer, 1998).
Google Scholar
Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).
Google Scholar
Vaida, F. & Blanchard, S. Conditional Akaike information for mixed-effects models. Biometrika 92, 351–370. https://doi.org/10.1093/biomet/92.2.351 (2005).
Google Scholar
Ward, E. J. A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol. Model. 211, 1–10. https://doi.org/10.1016/j.ecolmodel.2007.10.030 (2008).
Google Scholar
Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
Google Scholar
Christensen, W. Agreeing to disagree: Using SAS to make reasoned decisions when information criteria select different models. In SAS Conference Proceedings: Western Users of SAS Software 2018. September 5–7, 2018, Sacramento, California, Paper 099–2018 (2018).
Posada, D. & Buckley, T. R. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808. https://doi.org/10.1080/10635150490522304 (2004).
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).
Google Scholar
Buckland, S. T., Burnham, K. P. & Augustin, N. H. Model selection: An integral part of inference. Biometrics 53, 603–618. https://doi.org/10.2307/2533961 (1997).
Google Scholar
Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196. https://doi.org/10.3758/bf03206482 (2004).
Google Scholar
Lack, D. The Natural Regulation of Animal Numbers (Oxford University Press, 1954).
Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Change Biol. 19, 697–710. https://doi.org/10.1111/gcb.12099 (2013).
Google Scholar
Wiehn, J. & Korpimäki, E. Food limitation on brood size: Experimental evidence in the Eurasian kestrel. Ecology 78, 2043–2050. https://doi.org/10.2307/2265943 (1997).
Google Scholar
Korpimäki, E. & Lagerström, M. Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 57, 433–441 (1988).
Google Scholar
Norris, K. J. Female choice and the quality of parental care in the great tit Parus major. Behav. Ecol. Sociobiol. 27, 275–281 (1990).
Google Scholar
Naef-Daenzer, B., Widmer, F. & Nuber, M. Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. J. Anim. Ecol. 70, 730–738. https://doi.org/10.1046/j.0021-8790.2001.00533.x (2001).
Google Scholar
Grüebler, M. U. & Naef-Daenzer, B. Postfledging parental effort in barn swallows: Evidence for a trade-off in the allocation of time between broods. Anim. Behav. 75, 1877–1884. https://doi.org/10.1016/j.anbehav.2007.12.002 (2008).
Google Scholar
Jones, T. M., Ward, M. P., Benson, T. J. & Brawn, J. D. Variation in nestling body condition and wing development predict cause-specific mortality in fledgling dickcissels. J. Avian Biol. 48, 439–447. https://doi.org/10.1111/jav.01143 (2017).
Google Scholar
Magrath, R. D. Nestling weight and juvenile survival in the blackbird, Turdus merula. J. Anim. Ecol. 60, 335–351. https://doi.org/10.2307/5464 (1991).
Google Scholar
Naef-Daenzer, B. & Grüebler, M. U. Post-fledging survival of altricial birds: Ecological determinants and adaptation. J. Field Ornithol. 87, 227–250. https://doi.org/10.1111/jofo.12157 (2016).
Google Scholar
Winkler, D. W., Luo, M. K. & Rakhimberdiev, E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173, 129–138. https://doi.org/10.1007/s00442-013-2605-z (2013).
Google Scholar
Hylton, R. A., Frederick, P. C., de la Fuente, T. E. & Spalding, M. G. Effects of nestling health on postfledging survival of wood storks. Condor 108, 97–106. https://doi.org/10.1650/0010-5422(2006)108[0097:Eonhop]2.0.Co;2 (2006).
Google Scholar
Imlay, T. L., Mann, H. A. R. & Leonard, M. L. No effect of insect abundance on nestling survival or mass for three aerial insectivores. Avian Conserv. Ecol. https://doi.org/10.5751/ace-01092-120219 (2017).
Google Scholar
Nooker, J. K., Dunn, P. O. & Whittingham, L. A. Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). Auk 122, 1225–1238. https://doi.org/10.1642/0004-8038(2005)122[1225:eofawa]2.0.co;2 (2005).
Google Scholar
Perrig, M., Gruebler, M. U., Keil, H. & Naef-Daenzer, B. Experimental food supplementation affects the physical development, behaviour and survival of little owl Athene noctua nestlings. Ibis 156, 755–767. https://doi.org/10.1111/ibi.12171 (2014).
Google Scholar
Perrig, M., Gruebler, M. U., Keil, H. & Naef-Daenzer, B. Post-fledging survival of little owls Athene noctua in relation to nestling food supply. Ibis 159, 532–540. https://doi.org/10.1111/ibi.12477 (2017).
Google Scholar
McDonald, P. G., Olsen, P. D. & Cockburn, A. Sex allocation and nestling survival in a dimorphic raptor: Does size matter? Behav. Ecol. 16, 922–930. https://doi.org/10.1093/beheco/ari071 (2005).
Google Scholar
Morosinotto, C. et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 196, 609–619. https://doi.org/10.1086/710708 (2020).
Google Scholar
Overskaug, K., Bolstad, J. P., Sunde, P. & Øien, I. J. Fledgling behavior and survival in northern tawny owls. Condor 101, 169–174 (1999).
Google Scholar
Todd, L. D., Poulin, R. G., Wellicome, T. I. & Brigham, R. M. Post-fledging survival of burrowing owls in Saskatchewan. J. Wildl. Manage. 67, 512–519. https://doi.org/10.2307/3802709 (2003).
Google Scholar
Cox, W. A., Thompson, F. R., Cox, A. S. & Faaborg, J. Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. J. Wildl. Manage. 78, 183–193. https://doi.org/10.1002/jwmg.670 (2014).
Google Scholar
Korpimäki, E. Timing of breeding of Tengmalm’s owl Aegolius funereus in relation to vole dynamics in western Finland. Ibis 129, 58–68 (1987).
Google Scholar
Pigeault, R., Cozzarolo, C. S., Glaizot, O. & Christe, P. Effect of age, haemosporidian infection and body condition on pair composition and reproductive success in great tits Parus major. Ibis 162, 613–626. https://doi.org/10.1111/ibi.12774 (2020).
Google Scholar
Hakkarainen, H. & Korpimäki, E. The effect of female body-size on clutch volume of Tengmalm’s owls Aegolius funereus in varying food conditions. Ornis Fenn. 70, 189–195 (1993).
Hanauska-Brown, L. A., Dufty, A. M. & Roloff, G. J. Blood chemistry, cytology, and body condition in adult northern goshawks (Accipiter gentilis). J. Raptor Res. 37, 299–306 (2003).
Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76, 2240–2246. https://doi.org/10.2307/1941698 (1995).
Google Scholar
Grilli, M. G., Pari, M. & Ibanez, A. Poor body conditions during the breeding period in a seabird population with low breeding success. Mar. Biol. https://doi.org/10.1007/s00227-018-3401-4 (2018).
Google Scholar
Toland, B. Hunting success of some Missouri raptors. Wilson Bull. 98, 116–125 (1986).
Masoero, G., Morosinotto, C., Laaksonen, T. & Korpimäki, E. Food hoarding of an avian predator: Sex- and age-related differences under fluctuating food conditions. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-00018-02571-x (2018).
Google Scholar
Masoero, G., Laaksonen, T., Morosinotto, C. & Korpimäki, E. Age and sex differences in numerical responses, dietary shifts, and total responses of a generalist predator to population dynamics of main prey. Oecologia 192, 699–711. https://doi.org/10.1007/s00442-020-04607-x (2020).
Google Scholar
Norrdahl, K. & Korpimäki, E. Changes in population structure and reproduction during a 3-year population cycle of voles. Oikos 96, 331–345. https://doi.org/10.1034/j.1600-0706.2002.970319.x (2002).
Google Scholar
Merritt, J. F., Lima, M. & Bozinovic, F. Seasonal regulation in fluctuating small mammal populations: Feedback structure and climate. Oikos 94, 505–514. https://doi.org/10.1034/j.1600-0706.2001.940312.x (2001).
Google Scholar
Solonen, T. Overwinter population change of small mammals in southern Finland. Ann. Zool. Fenn. 43, 295–302 (2006).
Haapakoski, M. & Ylönen, H. Snow evens fragmentation effects and food determines overwintering success in ground-dwelling voles. Ecol. Res. 28, 307–315. https://doi.org/10.1007/s11284-012-1020-y (2013).
Google Scholar
Berlioz, J. & Bergman, G. (eds) Proc., XII International Ornithological Congress, Helsinki 5–12 Vol. 158, 586–591 (Tilgmannin Kirjapaino, 1960).
Fraixedas, S., Linden, A. & Lehikoinen, A. Population trends of common breeding forest birds in southern Finland are consistent with trends in forest management and climate change. Ornis Fenn. 92, 187–203 (2015).
Virkkala, R. Long-term decline of southern boreal forest birds: Consequence of habitat alteration or climate change? Biodivers. Conserv. 25, 151–167. https://doi.org/10.1007/s10531-015-1043-0 (2016).
Google Scholar
Björklund, H., Valkama, J., Tomppo, E. & Laaksonen, T. Habitat effects on the breeding performance of three forest-dwelling hawks. PLoS ONE 10(9), e0137877. https://doi.org/10.1371/journal.pone.0137877 (2015).
Google Scholar
Koskimäki, J. et al. Are habitat loss, predation risk and climate related to the drastic decline in a Siberian flying squirrel population? A 15-year study. Popul. Ecol. 56, 341–348. https://doi.org/10.1007/s10144-013-0411-4 (2014).
Google Scholar
Suzuki, N. & Parker, K. L. Proactive conservation of high-value habitat for woodland caribou and grizzly bears in the boreal zone of British Columbia, Canada. Biol. Conserv. 230, 91–103. https://doi.org/10.1016/j.biocon.2018.12.013 (2019).
Google Scholar
Venier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490. https://doi.org/10.1139/er-2013-0075 (2014).
Google Scholar
Thomas, J. W. et al. A Conservation Strategy for the Northern Spotted Owl (US Government Printing Office 791-171/20026, 1990).
Laaksonen, T. & Lehikoinen, A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 168, 99–107. https://doi.org/10.1016/j.biocon.2013.09.007 (2013).
Google Scholar
Source: Ecology - nature.com