in

Management implications of long transients in ecological systems

  • 1.

    Sardain, A., Sardain, E. & Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2, 274–282 (2019).

    Article  Google Scholar 

  • 2.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 3.

    Pöysä, H. et al. Changes in species richness and composition of boreal waterbird communities: a comparison between two time periods 25 years apart. Sci. Rep. 9, 1725 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Underwood, G. J. C. et al. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nat. Clim. Change 9, 170–176 (2019).

    Article  Google Scholar 

  • 5.

    Kubicek, A., Breckling, B., Hoegh-Guldberg, O. & Reuter, H. Climate change drives trait-shifts in coral reef communities. Sci. Rep. 9, 3721 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 6.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article  Google Scholar 

  • 7.

    Hastings, A. Timescales, dynamics, and ecological understanding. Ecology 91, 3471–3480 (2010).

    PubMed  Article  Google Scholar 

  • 8.

    Hastings, A. Timescales and the management of ecological systems. Proc. Natl Acad. Sci. USA 113, 14568–14573 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Hastings, A. Transients: the key to long-term ecological understanding? Trends Ecol. Evol. 19, 39–45 (2004).

    PubMed  Article  Google Scholar 

  • 10.

    Hastings, A. & Higgins, K. Persistence of transients in spatially structured ecological models. Science 263, 1133–1136 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Hastings, A. Transient dynamics and persistence of ecological systems. Ecol. Lett. 4, 215–220 (2001).

    Article  Google Scholar 

  • 12.

    Likens, G. E. (ed.) Long-Term Studies in Ecology: Approaches and Alternatives (Springer, 1989).

  • 13.

    Franklin, J. F., Bledsoe, C. S. & Callahan, J. T. Contributions of the Long-term Ecological Research program. Bioscience 40, 509–523 (1990).

    Article  Google Scholar 

  • 14.

    Ratajczak, Z. et al. The interactive effects of press/pulse intensity and duration on regime shifts at multiple scales. Ecol. Monogr. 87, 198–218 (2017).

    Article  Google Scholar 

  • 15.

    Hastings, A. et al. Transient phenomena in ecology. Science 361, eaat6412 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 16.

    Morozov, A. et al. Long transients in ecology: theory and applications. Phys. Life Rev. 32, 1–40 (2020).

    PubMed  Article  Google Scholar 

  • 17.

    Holling, C. S. Adaptive Environmental Assessment and Management (International Institute for Applied Systems Analysis, 1978).

  • 18.

    Walters, C. Adaptive Management of Renewable Resources (Macmillan, 1986).

  • 19.

    Lee, K. N. Appraising adaptive management. Conserv. Ecol. 3, 3 (1999).

    Article  Google Scholar 

  • 20.

    Gunderson, L. & Light, S. S. Adaptive management and adaptive governance in the Everglades ecosystem. Policy Sci. 39, 323–334 (2006).

    Article  Google Scholar 

  • 21.

    Franklin, J. Biological legacies: a critical management concept from Mount St. Helens. In Trans. 55th North American Wildlife and Natural Resources Conference (1990).

  • 22.

    Funk, J. L. et al. Keys to enhancing the value of invasion ecology research for management. Biol. Invasions https://doi.org/10.1007/s10530-020-02267-9 (2020).

  • 23.

    Beaury, E. M. et al. Incorporating climate change into invasive species management: insights from managers. Biol. Invasions 22, 233–252 (2020).

    Article  Google Scholar 

  • 24.

    Cuddington, K. et al. Process-based models are required to manage ecological systems in a changing world. Ecosphere https://doi.org/10.1890/ES12-00178.1 (2013).

  • 25.

    White, J. W., Botsford, L. W., Hastings, A., Baskett, M. L. & Kaplan, D. M. Transient responses of fished populations to marine reserve establishment. Conserv. Lett. 6, 180–191 (2013).

    Article  Google Scholar 

  • 26.

    Kaplan, K. A. et al. Setting expected timelines of fished population recovery for the adaptive management of a marine protected area network. Ecol. Appl. https://doi.org/10.1002/eap.1949 (2019).

  • 27.

    Hopf, J. K., Jones, G. P., Williamson, D. H. & Connolly, S. R. Marine reserves stabilize fish populations and fisheries yields in disturbed coral reef systems. Ecol. Appl. 29, e01905 (2019).

    PubMed  Article  Google Scholar 

  • 28.

    Caselle, J. E., Davis, K. & Marks, L. M. Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecol. Lett. 21, 43–53 (2018).

    PubMed  Article  Google Scholar 

  • 29.

    Mahmood, A. H. et al. Comparison of techniques to control the aggressive environmental invasive species Galenia pubescens in a degraded grassland reserve, Victoria, Australia. PLoS ONE 13, 1–16 (2018).

    Google Scholar 

  • 30.

    Liebhold, A. M. et al. Eradication of invading insect populations: from concepts to applications. Annu. Rev. Entemol. 61, 335–352 (2016).

    CAS  Article  Google Scholar 

  • 31.

    Isbell, F. et al. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl Acad. Sci. USA 110, 11911–11916 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Clark, C. M. & Tilman, D. Recovery of plant diversity following N cessation: effects of recruitment, litter, and elevated N cycling. Ecology 91, 3620–3630 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Storkey, J. et al. Grassland biodiversity bounces back from long-term nitrogen addition. Nature 528, 401–404 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Brettin, A. Ecological Management Practices Informed by Flow–Kick Dynamics. PhD thesis, Univ. Minnesota (2019).

  • 35.

    Meyer, K. et al. Quantifying resilience to recurrent ecosystem disturbances using flow–kick dynamics. Nat. Sustain. 1, 671–678 (2018).

    Article  Google Scholar 

  • 36.

    Schindler, D. W. The dilemma of controlling cultural eutrophication of lakes. Proc. R. Soc. B 279, 4322–4333 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E. & Orihel, D. M. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 50, 8923–8929 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Scheffer, M., Carpenter, S. R., Foley, J. E., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Hopf, J. K., Jones, G. P., Williamson, D. H. & Connolly, S. R. Fishery consequences of marine reserves: short-term pain for longer-term gain. Ecol. Appl. 26, 818–829 (2016).

    PubMed  Article  Google Scholar 

  • 40.

    Hobbs, W. O. et al. A 200-year perspective on alternative stable state theory and lake management from a biomanipulated shallow lake. Ecol. Appl. 22, 1483–1496 (2012).

    PubMed  Article  Google Scholar 

  • 41.

    Fastner, J. et al. Combating cyanobacterial proliferation by avoiding or treating inflows with high P load-experiences from eight case studies. Aquat. Ecol. 50, 367–383 (2016).

    CAS  Article  Google Scholar 

  • 42.

    Vollenweider, R. A. Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrol. 37, 53–84 (1975).

    CAS  Google Scholar 

  • 43.

    Cullen, P. & Forsberg, C. Experiences with reducing point sources of phosphorus to lakes. Hydrobiologia 170, 321–336 (1988).

    CAS  Article  Google Scholar 

  • 44.

    Jeppesen, E. et al. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwat. Biol. 50, 1747–1771 (2005).

    CAS  Article  Google Scholar 

  • 45.

    Carpenter, S. R. & Brock, W. A. Spatial complexity, resilience, and policy diversity: fishing on lake-rich landscapes. Ecol. Soc. 9, 8 (2004).

    Article  Google Scholar 

  • 46.

    Walters, C. & Kitchell, J. F. Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing. Can. J. Fish. Aquat. Sci. 58, 39–50 (2001).

    Article  Google Scholar 

  • 47.

    Carpenter, S. R. Ecological futures: building an ecology of the long now. Ecology 83, 2069–2083 (2002).

    Google Scholar 

  • 48.

    Carpenter, S. R. Regime Shifts in Lake Ecosystems: Pattern and Variation (Ecology Institute, 2003).

  • 49.

    Francis, T. B. & Schindler, D. E. Degradation of littoral habitats by residential development: woody debris in lakes of the Pacific Northwest and Midwest, United States. Ambio 35, 274–280 (2006).

  • 50.

    Christensen, D. L., Herwig, B. R., Schindler, D. E. & Carpenter, S. R. Impacts of lakeshore residential development on coarse woody debris in north temperate lakes. Ecol. Appl. 6, 1143–1149 (1996).

    Article  Google Scholar 

  • 51.

    Grebogi, C., Ott, E. & Yorke, J. A. Crises, sudden changes in chaotic attractors and chaotic transients. Phys. D 7, 181–200 (1983).

    Article  Google Scholar 

  • 52.

    Tél, T. in Directions in Chaos (3): Experimental Study and Characterization of Chaos (ed. Hao, B.-L.) 149–211 (World Scientific, 1990).

  • 53.

    Lai, Y.-C. & Tél, T. Transient Chaos: Complex Dynamics on Finite-Time Scales (Springer, 2011).

  • 54.

    McCann, K. S. & Yodzis, P. Nonlinear dynamics and population disappearances. Am. Nat. 144, 873–879 (1994).

    Article  Google Scholar 

  • 55.

    Schiff, S. J. et al. Controlling chaos in the brain. Nature 370, 615–620 (1994).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Dhamala, M. & Lai, Y.-C. Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology. Phys. Rev. E 59, 1646–1655 (1999).

    CAS  Article  Google Scholar 

  • 57.

    Hilker, F. M. & Westerhoff, F. H. Preventing extinction and outbreaks in chaotic populations. Am. Nat. 170, 232–241 (2007).

    PubMed  Article  Google Scholar 

  • 58.

    Park, M.-G., Park, S.-A., Cho, K. & Jang, B. Controlling transient of species in food chain. Proc. Korean Ind. Appl. Math. Assoc. 6, 249–253 (2011).

    Google Scholar 

  • 59.

    Tel, T. Controlling transient chaos. J. Phys. A 24, L1359–L1368 (1991).

    Article  Google Scholar 

  • 60.

    Lai, Y.-C. & Grebogi, C. Converting transient chaos into sustained chaos by feedback control. Phys. Rev. E 49, 1094–1098 (1994).

    CAS  Article  Google Scholar 

  • 61.

    Schwartz, I. B. & Triandaf, I. Sustaining chaos by using basin boundary saddles. Phys. Rev. Lett. 77, 4740–4743 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990).

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20 (2010).

    Article  Google Scholar 

  • 64.

    Walters, C. J. & Holling, C. S. Large-scale management experiments and learning by doing. Ecology 71, 2060–2068 (1990).

    Article  Google Scholar 

  • 65.

    Bulman, C. R. et al. Minimum viable metapopulation size, extinction debt, and the conservation of a declining species. Ecol. Appl. 17, 1460–1473 (2007).

    PubMed  Article  Google Scholar 

  • 66.

    Mcdonald, J. L., Stott, I., Townley, S. & Hodgson, D. J. Transients drive the demographic dynamics of plant populations in variable environments. J. Ecol. 104, 306–314 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Carpenter, S. R. & Gunderson, L. H. Coping with collapse: ecological and social dynamics in ecosystem management. Bioscience 51, 451–457 (2001).

    Article  Google Scholar 

  • 68.

    Fulton, E. A. et al. A multi-model approach to engaging stakeholder and modellers in complex environmental problems. Environ. Sci. Policy 48, 44–56 (2015).

    Article  Google Scholar 

  • 69.

    Plagányi, É. E. et al. Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish Fish. 15, 1–22 (2014).

    Article  Google Scholar 

  • 70.

    Collie, J. S. et al. Ecosystem models for fisheries management: finding the sweet spot. Fish Fish. 17, 101–125 (2016).

    Article  Google Scholar 

  • 71.

    Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).

    PubMed  Article  Google Scholar 

  • 72.

    Silvertown, J. et al. The Park Grass Experiment 1856–2006: its contribution to ecology. J. Ecol. 94, 801–814 (2006).

    CAS  Article  Google Scholar 

  • 73.

    Pace, M. L., Carpenter, S. R. & Wilkinson, G. M. Long-term studies and reproducibility: lessons from whole-lake experiments. Limnol. Oceanogr. 64, S22–S33 (2019).

    CAS  Article  Google Scholar 

  • 74.

    McGlathery, K. J. et al. Nonlinear dynamics and alternative stable states in shallow coastal systems. Oceanography 26, 220–231 (2013).

    Article  Google Scholar 

  • 75.

    Van Cleve, K. & Martin, S. (eds) Long-Term Ecological Research in the United States: A Network of Research Sites 6th edn (Long Term Ecological Research Office, 1991).

  • 76.

    Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere https://doi.org/10.1890/ES11-00216.1 (2011).

  • 77.

    Reed-Andersen, T., Carpenter, S. R. & Lathrop, R. C. Phosphorus flow in a watershed-lake ecosystem. Ecosystems 3, 561–573 (2000).

    CAS  Article  Google Scholar 

  • 78.

    Bell, D. M. et al. Long-term ecological research and evolving frameworks of disturbance ecology. BioScience 70, 141–156 (2020).

    Article  Google Scholar 

  • 79.

    Pahl-Wostl, C. A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Glob. Environ. Change 19, 354–365 (2009).

    Article  Google Scholar 

  • 80.

    White, J. W. et al. Transient responses of fished populations to marine reserve establishment. Conserv. Lett. 6, 180–191 (2013).

    Article  Google Scholar 

  • 81.

    Chadès, I. et al. Optimization methods to solve adaptive management problems. Theor. Ecol. 10, 1–20 (2017).

    Article  Google Scholar 

  • 82.

    Kot, M. Elements of Mathematical Ecology (Cambridge Univ. Press, 2001).

  • 83.

    Strogatz, S. H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Addison-Wesley, 1994).


  • Source: Ecology - nature.com

    The sources of variation for individual prey-to-predator size ratios

    Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web