in

Mapping coral calcification strategies from in situ boron isotope and trace element measurements of the tropical coral Siderastrea siderea

  • 1.

    Cesar, H. J. S., Burke, L. & Pet-Soede, L. The Economics of Worldwide Coral Reef Degradation. 23 (Cesar Environmental Economics Consulting: The Netherlands). https://www.icran.org/pdf/cesardegradationreport.pdf (2003).

  • 2.

    Tambutté, E. et al. Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26, 517–529 (2007).

    ADS  Article  Google Scholar 

  • 3.

    Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Mass, T. et al. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr. Biol. 23, 1126–1131. https://doi.org/10.1016/j.cub.2013.05.007 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 5.

    Guo, W. Seawater temperature and buffering capacity modulate coral calcifying pH. Sci. Rep. 9, 1–13 (2019).

    Article  Google Scholar 

  • 6.

    McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Guo, W. et al. Ocean acidification has impacted coral growth on the great barrier reef. Geophys. Res. Lett. https://doi.org/10.1029/2019gl086761 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Sevilgen, D. S. et al. Full in vivo characterization of carbonate chemistry at the site of calcification in corals. Sci. Adv. https://doi.org/10.1126/sciadv.aau7447 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Venn, A., Tambutté, E., Holcomb, M., Allemand, D. & Tambutté, S. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS ONE 6, e20013 (2011).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Cai, W.-J. et al. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat. Commun. 7, 1–8 (2016).

    Google Scholar 

  • 11.

    Holcomb, M. et al. Coral calcifying fluid pH dictates response to ocean acidification. Sci. Rep. 4, 5207. https://doi.org/10.1038/srep05207 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    DeCarlo, T. M., Holcomb, M. & McCulloch, M. T. Reviews and syntheses: revisiting the boron systematics of aragonite and their application to coral calcification. Biogeosciences 15, 2819–2834. https://doi.org/10.5194/bg-15-2819-2018 (2018).

    ADS  CAS  Article  Google Scholar 

  • 13.

    McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M. & Trotter, J. A. Coral calcification in a changing world and the interactive dynamics of pH and DIC upregulation. Nat. Commun. 8, 15686. https://doi.org/10.1038/ncomms15686 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Horvath, K. M. et al. Next-century ocean acidification and warming both reduce calcification rate, but only acidification alters skeletal morphology of reef-building coral Siderastrea siderea. Sci. Rep. 6, 29613. https://doi.org/10.1038/srep29613 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Tambutté, E. et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat. Commun. 6, 7368. https://doi.org/10.1038/ncomms8368 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Stewart, J. A., Anagnostou, E. & Foster, G. L. An improved boron isotope pH proxy calibration for the deep-sea coral Desmophyllum dianthus through sub-sampling of fibrous aragonite. Chem. Geol. 447, 148–160. https://doi.org/10.1016/j.chemgeo.2016.10.029 (2016).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Allison, N., Finch, A. A. & EIMF. δ11B, Sr, Mg and B in a modern Porites coral: the relationship between calcification site pH and skeletal chemistry. Geochim. Cosmochim. Acta 74, 1790–1800 (2010).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Rollion-Bard, C. & Blamart, D. SIMS method and examples of applications in coral biomineralization. In Biomineralization Sourcebook: Characterization of Biominerals and Biomimetic Materials (eds DiMasi, E. & Gower, L. B.) 249–261 (CRC Press, Boca Raton, 2014).

    Google Scholar 

  • 19.

    Trotter, J. et al. Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet. Sci. Lett. 303, 163–173. https://doi.org/10.1016/j.epsl.2011.01.030 (2011).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001 (2010).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Hönisch, B. et al. Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim. Cosmochim. Acta 68, 3675–3685. https://doi.org/10.1016/j.gca.2004.03.002 (2004).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Tanaka, K. et al. Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH. Coral Reefs 34, 1139–1149 (2015).

    ADS  Article  Google Scholar 

  • 23.

    Reynaud, S., Hemming, N. G., Juillet-Leclerc, A. & Gattuso, J.-P. Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23, 539–546 (2004).

    Google Scholar 

  • 24.

    Anagnostou, E., Huang, K.-F., You, C.-F., Sikes, E. & Sherrell, R. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth Planet. Sci. Lett. 349, 251–260 (2012).

    ADS  Article  Google Scholar 

  • 25.

    Jurikova, H. et al. Boron isotope composition of the cold-water coral Lophelia pertusa along the Norwegian margin: zooming into a potential pH-proxy by combining bulk and high-resolution approaches. Chem. Geol. 513, 143–152. https://doi.org/10.1016/j.chemgeo.2019.01.005 (2019).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Kasemann, S. A., Schmidt, D. N., Bijma, J. & Foster, G. L. In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH. Chem. Geol. https://doi.org/10.1016/j.chemgeo.2008.12.015 (2009).

    Article  Google Scholar 

  • 27.

    Rollion-Bard, C., Chaussidon, M. & France-Lanord, C. pH control on oxygen isotopic composition of symbiotic corals. Earth Planet. Sci. Lett. 215, 275–288. https://doi.org/10.1016/S0012-821X(03)00391-1 (2003).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Standish, C. D. et al. The effect of matrix interferences on in situ boron isotope analysis by laser ablation multi-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 33, 959–968 (2019).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Sadekov, A. et al. Accurate and precise microscale measurements of boron isotope ratios in calcium carbonates using laser ablation multicollector-ICPMS. J. Anal. At. Spectrom. 34, 550–560 (2019).

    CAS  Article  Google Scholar 

  • 30.

    Fietzke, J. et al. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material. J. Anal. At. Spectrom. 25, 1953–1957 (2010).

    CAS  Article  Google Scholar 

  • 31.

    Oppelt, A., López, M. & Rocha, C. Biogeochemical analysis of the calcification patterns of cold-water corals Madrepora oculata and Lophelia pertusa along contact surfaces with calcified tubes of the symbiotic polychaete Eunice norvegica: evaluation of a ‘mucus’ calcification hypothesis. Deep Sea Res. I Oceanogr. Res. Pap. 127, 90–104. https://doi.org/10.1016/j.dsr.2017.08.006 (2017).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Fowell, S. et al. Historical trends in pH and carbonate biogeochemistry on the Belize Mesoamerican Barrier Reef System. Geophys. Res. Lett. 45, 3228–3237 (2018).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Runcorn, S. K. Corals as paleontological clocks. Sci. Am. 215, 26–33 (1966).

    Article  Google Scholar 

  • 34.

    DeCarlo, T. M. & Cohen, A. L. Dissepiments, density bands and signatures of thermal stress in Porites skeletons. Coral Reefs 36, 749–761. https://doi.org/10.1007/s00338-017-1566-9 (2017).

    ADS  Article  Google Scholar 

  • 35.

    Barnes, D. & Lough, J. On the nature and causes of density banding in massive coral skeletons. J. Exp. Mar. Biol. Ecol. 167, 91–108 (1993).

    Article  Google Scholar 

  • 36.

    DeCarlo, T. M. et al. Coral Sr-U thermometry. Paleoceanography 31, 626–638 (2016).

    ADS  Article  Google Scholar 

  • 37.

    Gagnon, A. C., Adkins, J. F., Fernandez, D. P. & Robinson, L. F. Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth Planet. Sci. Lett. 261, 280–295. https://doi.org/10.1016/j.epsl.2007.07.013 (2007).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Blamart, D. et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleo-pH. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2007GC001686 (2007).

    Article  Google Scholar 

  • 39.

    Jokiel, P. L. Coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proc. Biol. Sci. 280, 20130031–20130031. https://doi.org/10.1098/rspb.2013.0031 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Galli, G. & Solidoro, C. ATP supply may contribute to light-enhanced calcification in corals more than abiotic mechanisms. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00068 (2018).

    Article  Google Scholar 

  • 41.

    Barott, K. L., Venn, A. A., Perez, S. O., Tambutté, S. & Tresguerres, M. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc. Natl. Acad. Sci. 112, 607–612. https://doi.org/10.1073/pnas.1413483112 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 42.

    Bernardet, C., Tambutté, E., Techer, N., Tambutté, S. & Venn, A. Ion transporter gene expression is linked to the thermal sensitivity of calcification in the reef coral Stylophora pistillata. Sci. Rep. 9, 1–13 (2019).

    Article  Google Scholar 

  • 43.

    Le Goff, C. et al. In vivo pH measurement at the site of calcification in an octocoral. Sci. Rep. 7, 11210. https://doi.org/10.1038/s41598-017-10348-4 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    Zoccola, D. et al. Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci. Rep. 5, 9983. https://doi.org/10.1038/srep09983 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).

    CAS  PubMed  Google Scholar 

  • 46.

    DeLong, K. L., Maupin, C. R., Flannery, J. A., Quinn, T. M. & Shen, C.-C. Refining temperature reconstructions with the Atlantic coral Siderastrea siderea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 462, 1–15. https://doi.org/10.1016/j.palaeo.2016.08.028 (2016).

    Article  Google Scholar 

  • 47.

    Castillo, K. D., Ries, J. B. & Weiss, J. M. Declining coral skeletal extension for forereef colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System Southern Belize. PLoS ONE 6, e14615 (2011).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Castillo, K. D., Ries, J. B., Weiss, J. M. & Lima, F. P. Decline of forereef corals in response to recent warming linked to history of thermal exposure. Nat. Clim. Change 2, 756–760. https://doi.org/10.1038/nclimate1577 (2012).

    Article  Google Scholar 

  • 49.

    Foster, G. L. Seawater pH, pCO2 and CO32 variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic forminifera. Earth Planet. Sci. Lett. 271, 254–266. https://doi.org/10.1016/j.epsl.2008.04.015 (2008).

    ADS  CAS  Article  Google Scholar 

  • 50.

    Foster, G. L. et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358, 1–14. https://doi.org/10.1016/j.chemgeo.2013.08.027 (2013).

    ADS  CAS  Article  Google Scholar 

  • 51.

    le Roux P. J. et al. In situ, multiplemultiplier, laser ablation ICP‐MS measurement of boron isotopic composition (δ11B) at the nanogram level. Chem. Geol. 203(1–2), 123–138. https://doi.org/10.1016/j.chemgeo.2003.09.006 (2004).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Inoue, M., Nohara, M., Okai, T., Suzuki, A. & Kawahata, H. Concentrations of trace elements in carbonate reference materials coral JCp-1 and Giant Clam JCt-1 by inductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 28, 411–416. https://doi.org/10.1111/j.1751-908X.2004.tb00759.x (2004).

    CAS  Article  Google Scholar 

  • 53.

    Thil, F. et al. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral. Rapid Commun. Mass Spectrom. 30, 359–371 (2016).

    CAS  Article  Google Scholar 

  • 54.

    Hathorne, E. C. et al. Interlaboratory study for coral Sr/Ca and other element/Ca ratio measurements. Geochem. Geophys. Geosyst. 14, 3730–3750. https://doi.org/10.1002/ggge.20230 (2013).

    ADS  CAS  Article  Google Scholar 

  • 55.

    Hijmans, R. & Van Etten, J. Geographic analysis and modeling with raster data. R Package Version 2, 1–25 (2012).

    Google Scholar 

  • 56.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2010).

  • 57.

    Foster, G. L., von Strandmann, P. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2010gc003201 (2010).

    Article  Google Scholar 

  • 58.

    Klochko, K., Kaufman, A. J., Yao, W. S., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. https://doi.org/10.1016/j.epsl.2006.05.034 (2006).

    Article  Google Scholar 

  • 59.

    Holcomb, M., DeCarlo, T., Gaetani, G. & McCulloch, M. Factors affecting B/Ca ratios in synthetic aragonite. Chem. Geol. 437, 67–76 (2016).

    ADS  CAS  Article  Google Scholar 

  • 60.

    Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Oceanogr. Res. Pap. 37, 755–766. https://doi.org/10.1016/0198-0149(90)90004-F (1990).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Lee, K. et al. The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim. Cosmochim. Acta 74, 1801–1811 (2010).

    ADS  CAS  Article  Google Scholar 

  • 62.

    Zeebe, R. E. & Wolf-Gladrow, D. A. CO2in Seawater: Equilibrium, Kinetics, Isotopes in Seawater: Equilibrium, Kinetics, Isotopes Vol. 65 (Elsevier, Amsterdam, 2001).

    Google Scholar 

  • 63.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets

    A pilot study of eDNA metabarcoding to estimate plant biodiversity by an alpine glacier core (Adamello glacier, North Italy)