in

Marine phytoplankton functional types exhibit diverse responses to thermal change

  • 1.

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and cceanic components. Science 281, 237–240 (1998).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, GB3003 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, 1–6 (2011).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Vallina, S. M., Cermeno, P., Dutkiewicz, S., Loreau, M. & Montoya, J. M. Phytoplankton functional diversity increases ecosystem productivity and stability. Ecol. Modell. 361, 184–196 (2017).

    Article 

    Google Scholar 

  • 9.

    Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 5, 1002–1006 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Laufkotter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19, 1–14 (2005).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Anderson, S. I. & Rynearson, T. A. Variability approaching the thermal limits can drive diatom community dynamics. Limnol. Oceanogr. 65, 1961–1973 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Chang. 9, 148–152 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Thomas, M. K. & Litchman, E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763, 357–369 (2016).

    Article 

    Google Scholar 

  • 15.

    Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol. Oceanogr. 57, 554–566 (2012).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).

    Article 

    Google Scholar 

  • 20.

    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6, 4–11 (2015).

    Google Scholar 

  • 22.

    Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycles 24, 1–19 (2010).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Chang. 3, 979–984 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Boyd, P. W. & Hutchins, D. A. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 470, 125–135 (2012).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Thomas, M. K., Kremer, C. T. & Litchman, E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Glob. Ecol. Biogeogr. 25, 75–86 (2016).

    Article 

    Google Scholar 

  • 27.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).

  • 28.

    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  • 29.

    Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Prowe, A. E. F., Pahlow, M., Dutkiewicz, S. & Oschlies, A. How important is diversity for capturing environmental-change responses in ecosystem models? Biogeosciences 11, 3397–3407 (2014).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Chen, B. & Liu, H. Relationships between phytoplankton growth and cell size in surface oceans: Interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55, 965–972 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Barton, S. & Yvon‐Durocher, G. Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnol. Oceanogr. 64, 2081–2091 (2019).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Sherman, E., Moore, J. K., Primeau, F. & Tanouye, D. Temperature influence on phytoplankton community growth rates. Glob. Biogeochem. Cycles 30, 550–559 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Alexander, H. et al. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc. Natl Acad. Sci. USA 112, E5972–E5979 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Cermeño, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl Acad. Sci. USA 105, 20344–20349 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Calvo, E., Pelejero, C., Pena, L. D., Cacho, I. & Logan, G. A. Eastern Equatorial Pacific productivity and related-CO2 changes since the last glacial period. Proc. Natl Acad. Sci. USA 108, 5537–5541 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 43, 10,366–10,376 (2016).

    Article 

    Google Scholar 

  • 38.

    Roberts, S. D., Van Ruth, P. D., Wilkinson, C., Bastianello, S. S. & Bansemer, M. S. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Front. Mar. Sci. 6, 1–20 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • 41.

    Keeling, P. J. The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. B Biol. Sci. 365, 729–748 (2010).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. The single, ancient origin of chromist plastids. Proc. Natl Acad. Sci. USA 99, 15507–15512 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Jönsson, B. F. & Watson, J. R. The timescales of global surface-ocean connectivity. Nat. Commun. 7, 1–6 (2016).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Doblin, M. A. & van Sebille, E. Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proc. Natl Acad. Sci. USA 113, 5700–5705 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Whittaker, K. & Rynearson, T. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow. Proc. Natl Acad. Sci. USA 114, 2651–2656 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Ward, B. A., Cael, B. B., Collins, S. & Robert Young, C. Selective constraints on global plankton dispersal. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).

    Google Scholar 

  • 49.

    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).

    Google Scholar 

  • 50.

    Collins, M. et al. in Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds. Stocker, T. F. et al.) 1029–1136 (Cambridge University Press, 2013).

  • 51.

    Bopp, L., Aumont, O., Cadule, P., Alvain, S. & Gehlen, M. Response of diatoms distribution to global warming and potential implications: A global model study. Geophys. Res. Lett. 32, L19606 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Ward, B. A. Temperature-correlated changes in phytoplankton community structure are restricted to polar waters. PLoS ONE 10, 1–15 (2015).

    Google Scholar 

  • 53.

    Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W. M. & Guikema, S. D. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 350, 1533–1537 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences Discuss. 7, 979–1005 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 56.

    Arrigo, K. R., van Dijken, G. L. & Strong, A. L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Ocean. 120, 2813–2825 (2015).

    Article 

    Google Scholar 

  • 57.

    Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecol. Lett. 22, 1860–1869 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol. Oceanogr. 61, 1232–1244 (2016).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S. & Yvon-Durocher, G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19, 133–142 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Baker, K. G. et al. Thermal niche evolution of functional traits in a tropical marine phototroph. J. Phycol. 54, 799–810 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    O’Donnell, D. R. et al. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob. Chang. Biol. 24, 4554–4565 (2018).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322, 85–97 (2006).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Arizona Software Inc. GraphClick 3.0.2. http://www.arizona-software.ch/graphclick/ (2010).

  • 66.

    Norberg, J. Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol. Oceanogr. 49, 1269–1277 (2004).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Bolker, B. & Team, R. D. C. bbmle: Tools for general maximum likelihood estimation. https://github.com/bbolker/bbmle (2017).

  • 68.

    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).

  • 69.

    Riahi, K. et al. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Koenker, R. quantreg: Quantile regression. https://cran.r-project.org/package=quantreg (2019).

  • 71.

    Chen, B. & Laws, E. A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol. Oceanogr. 62, 806–817 (2017).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Sal, S., Alonso-Saez, L., Bueno, J., Garcıa, F. C. & Lopez-Urrutia, A. Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnol. Oceanogr. 60, 1212–1221 (2015).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Koenker, R. Quantile Regression, https://doi.org/10.1017/CBO9780511754098 (Cambridge University Press, 2005).

  • 74.

    Tomas, C. R. et al. Identifying Marine Phytoplankton. (Academic Press, 1997).

  • 75.

    He, X. & Hu, F. Markov chain marginal bootstrap. J. Am. Stat. Assoc. 97, 783–795 (2002).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 76.

    Rynearson, T. A. Literature compilation of thermal growth rates from four phytoplankton functional types. Biological and Chemical Oceanography Data Management Office (BCO-DMO), (2021). https://doi.org/10.26008/1912/bco-dmo.839696.1

  • 77.

    Rynearson, T. A. Estimated thermal capacities for phytoplankton strains. Biological and Chemical Oceanography Data Management Office (BCO-DMO), https://doi.org/10.26008/1912/bco-dmo.839713.1 (2021).

  • 78.

    Rynearson, T. A. Estimated thermal traits for phytoplankton. Biological and Chemical Oceanography Data Management Office (BCO-DMO), https://doi.org/10.26008/1912/bco-dmo.839689.1 (2021).

  • 79.

    Anderson, S. I. sianderson/PFT_thermal_response: Marine Phytoplankton Functional Types Exhibit Diverse Responses to Thermal Change. zenodo. https://doi.org/10.5281/zenodo.5507532 (2021).

  • 80.

    Buitenhuis, E. T., Pangerc, T., Franklin, D. J., Le Quéré, C. & Malin, G. Growth rates of six coccolithophorid strains as a function of temperature. Limnol. Oceanogr. 53, 1181–1185 (2008).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Stawiarski, B., Buitenhuis, E. T. & Le Quéré, C. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Functional diversity effects on productivity increase with age in a forest biodiversity experiment

    MIT Energy Night 2021: Connecting global innovators to local talent