in

Marine phytoplankton functional types exhibit diverse responses to thermal change

  • 1.

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and cceanic components. Science 281, 237–240 (1998).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, GB3003 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 7.

    Taucher, J. & Oschlies, A. Can we predict the direction of marine primary production change under global warming? Geophys. Res. Lett. 38, 1–6 (2011).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Vallina, S. M., Cermeno, P., Dutkiewicz, S., Loreau, M. & Montoya, J. M. Phytoplankton functional diversity increases ecosystem productivity and stability. Ecol. Modell. 361, 184–196 (2017).

    Article 

    Google Scholar 

  • 9.

    Dutkiewicz, S. et al. Impact of ocean acidification on the structure of future phytoplankton communities. Nat. Clim. Chang. 5, 1002–1006 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Laufkotter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Behrenfeld, M. J., Boss, E., Siegel, D. A. & Shea, D. M. Carbon-based ocean productivity and phytoplankton physiology from space. Glob. Biogeochem. Cycles 19, 1–14 (2005).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Anderson, S. I. & Rynearson, T. A. Variability approaching the thermal limits can drive diatom community dynamics. Limnol. Oceanogr. 65, 1961–1973 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 13.

    Boyd, P. W. Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean. Nat. Clim. Chang. 9, 148–152 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Thomas, M. K. & Litchman, E. Effects of temperature and nitrogen availability on the growth of invasive and native cyanobacteria. Hydrobiologia 763, 357–369 (2016).

    Article 

    Google Scholar 

  • 15.

    Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: Reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Limnol. Oceanogr. 57, 554–566 (2012).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).

    Article 

    Google Scholar 

  • 20.

    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6, 4–11 (2015).

    Google Scholar 

  • 22.

    Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycles 24, 1–19 (2010).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Chang. 3, 979–984 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Boyd, P. W. & Hutchins, D. A. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 470, 125–135 (2012).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Thomas, M. K., Kremer, C. T. & Litchman, E. Environment and evolutionary history determine the global biogeography of phytoplankton temperature traits. Glob. Ecol. Biogeogr. 25, 75–86 (2016).

    Article 

    Google Scholar 

  • 27.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).

  • 28.

    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  • 29.

    Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: Improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Prowe, A. E. F., Pahlow, M., Dutkiewicz, S. & Oschlies, A. How important is diversity for capturing environmental-change responses in ecosystem models? Biogeosciences 11, 3397–3407 (2014).

    ADS 
    Article 

    Google Scholar 

  • 31.

    Chen, B. & Liu, H. Relationships between phytoplankton growth and cell size in surface oceans: Interactive effects of temperature, nutrients, and grazing. Limnol. Oceanogr. 55, 965–972 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Barton, S. & Yvon‐Durocher, G. Quantifying the temperature dependence of growth rate in marine phytoplankton within and across species. Limnol. Oceanogr. 64, 2081–2091 (2019).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Sherman, E., Moore, J. K., Primeau, F. & Tanouye, D. Temperature influence on phytoplankton community growth rates. Glob. Biogeochem. Cycles 30, 550–559 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Alexander, H. et al. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proc. Natl Acad. Sci. USA 112, E5972–E5979 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Cermeño, P. et al. The role of nutricline depth in regulating the ocean carbon cycle. Proc. Natl Acad. Sci. USA 105, 20344–20349 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Calvo, E., Pelejero, C., Pena, L. D., Cacho, I. & Logan, G. A. Eastern Equatorial Pacific productivity and related-CO2 changes since the last glacial period. Proc. Natl Acad. Sci. USA 108, 5537–5541 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 43, 10,366–10,376 (2016).

    Article 

    Google Scholar 

  • 38.

    Roberts, S. D., Van Ruth, P. D., Wilkinson, C., Bastianello, S. S. & Bansemer, M. S. Marine heatwave, harmful algae blooms and an extensive fish kill event during 2013 in South Australia. Front. Mar. Sci. 6, 1–20 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 1–12 (2019).

    MathSciNet 
    Article 

    Google Scholar 

  • 41.

    Keeling, P. J. The endosymbiotic origin, diversification and fate of plastids. Philos. Trans. R. Soc. B Biol. Sci. 365, 729–748 (2010).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. The single, ancient origin of chromist plastids. Proc. Natl Acad. Sci. USA 99, 15507–15512 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Jönsson, B. F. & Watson, J. R. The timescales of global surface-ocean connectivity. Nat. Commun. 7, 1–6 (2016).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Doblin, M. A. & van Sebille, E. Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proc. Natl Acad. Sci. USA 113, 5700–5705 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Whittaker, K. & Rynearson, T. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow. Proc. Natl Acad. Sci. USA 114, 2651–2656 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Ward, B. A., Cael, B. B., Collins, S. & Robert Young, C. Selective constraints on global plankton dispersal. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).

    Google Scholar 

  • 49.

    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).

    Google Scholar 

  • 50.

    Collins, M. et al. in Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds. Stocker, T. F. et al.) 1029–1136 (Cambridge University Press, 2013).

  • 51.

    Bopp, L., Aumont, O., Cadule, P., Alvain, S. & Gehlen, M. Response of diatoms distribution to global warming and potential implications: A global model study. Geophys. Res. Lett. 32, L19606 (2005).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 52.

    Ward, B. A. Temperature-correlated changes in phytoplankton community structure are restricted to polar waters. PLoS ONE 10, 1–15 (2015).

    Google Scholar 

  • 53.

    Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Rivero-Calle, S., Gnanadesikan, A., Del Castillo, C. E., Balch, W. M. & Guikema, S. D. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 350, 1533–1537 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Steinacher, M. et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences Discuss. 7, 979–1005 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 56.

    Arrigo, K. R., van Dijken, G. L. & Strong, A. L. Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Ocean. 120, 2813–2825 (2015).

    Article 

    Google Scholar 

  • 57.

    Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecol. Lett. 22, 1860–1869 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Edwards, K. F., Thomas, M. K., Klausmeier, C. A. & Litchman, E. Phytoplankton growth and the interaction of light and temperature: A synthesis at the species and community level. Limnol. Oceanogr. 61, 1232–1244 (2016).

    ADS 
    Article 

    Google Scholar 

  • 59.

    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 9130–9135 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Padfield, D., Yvon-Durocher, G., Buckling, A., Jennings, S. & Yvon-Durocher, G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol. Lett. 19, 133–142 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Baker, K. G. et al. Thermal niche evolution of functional traits in a tropical marine phototroph. J. Phycol. 54, 799–810 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    O’Donnell, D. R. et al. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob. Chang. Biol. 24, 4554–4565 (2018).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322, 85–97 (2006).

    ADS 
    Article 

    Google Scholar 

  • 65.

    Arizona Software Inc. GraphClick 3.0.2. http://www.arizona-software.ch/graphclick/ (2010).

  • 66.

    Norberg, J. Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol. Oceanogr. 49, 1269–1277 (2004).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Bolker, B. & Team, R. D. C. bbmle: Tools for general maximum likelihood estimation. https://github.com/bbolker/bbmle (2017).

  • 68.

    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).

  • 69.

    Riahi, K. et al. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 70.

    Koenker, R. quantreg: Quantile regression. https://cran.r-project.org/package=quantreg (2019).

  • 71.

    Chen, B. & Laws, E. A. Is there a difference of temperature sensitivity between marine phytoplankton and heterotrophs? Limnol. Oceanogr. 62, 806–817 (2017).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Sal, S., Alonso-Saez, L., Bueno, J., Garcıa, F. C. & Lopez-Urrutia, A. Thermal adaptation, phylogeny, and the unimodal size scaling of marine phytoplankton growth. Limnol. Oceanogr. 60, 1212–1221 (2015).

    ADS 
    Article 

    Google Scholar 

  • 73.

    Koenker, R. Quantile Regression, https://doi.org/10.1017/CBO9780511754098 (Cambridge University Press, 2005).

  • 74.

    Tomas, C. R. et al. Identifying Marine Phytoplankton. (Academic Press, 1997).

  • 75.

    He, X. & Hu, F. Markov chain marginal bootstrap. J. Am. Stat. Assoc. 97, 783–795 (2002).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 76.

    Rynearson, T. A. Literature compilation of thermal growth rates from four phytoplankton functional types. Biological and Chemical Oceanography Data Management Office (BCO-DMO), (2021). https://doi.org/10.26008/1912/bco-dmo.839696.1

  • 77.

    Rynearson, T. A. Estimated thermal capacities for phytoplankton strains. Biological and Chemical Oceanography Data Management Office (BCO-DMO), https://doi.org/10.26008/1912/bco-dmo.839713.1 (2021).

  • 78.

    Rynearson, T. A. Estimated thermal traits for phytoplankton. Biological and Chemical Oceanography Data Management Office (BCO-DMO), https://doi.org/10.26008/1912/bco-dmo.839689.1 (2021).

  • 79.

    Anderson, S. I. sianderson/PFT_thermal_response: Marine Phytoplankton Functional Types Exhibit Diverse Responses to Thermal Change. zenodo. https://doi.org/10.5281/zenodo.5507532 (2021).

  • 80.

    Buitenhuis, E. T., Pangerc, T., Franklin, D. J., Le Quéré, C. & Malin, G. Growth rates of six coccolithophorid strains as a function of temperature. Limnol. Oceanogr. 53, 1181–1185 (2008).

    ADS 
    Article 

    Google Scholar 

  • 81.

    Stawiarski, B., Buitenhuis, E. T. & Le Quéré, C. The physiological response of picophytoplankton to temperature and its model representation. Front. Mar. Sci. 3, 1–13 (2016).

    Article 

    Google Scholar 

  • Detection of heteroplasmy and nuclear mitochondrial pseudogenes in the Japanese spiny lobster Panulirus japonicus

    Fungal infections lead to shifts in thermal tolerance and voluntary exposure to extreme temperatures in both prey and predator insects