in

Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis

  • 1.

    Joseph, B. & Sujatha, S. Pharmacologically important natural products from marine sponges. J. Nat. Prod. 4, 5–12 (2011).

    CAS 

    Google Scholar 

  • 2.

    Bergmann, W. & Feeney, R. J. Contributions to the study of marine products XXXII The nucleosides of sponges. I. J. Org. Chem. 16, 981–987 (1951).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Munro, M. H. G., Luibrand, R. T. & Blunt, J. W. The search for antiviral and anticancer compounds from marine organisms. in Bioorganic Marine Chemistry (ed. Scheuer, P. J.) vol. 1 93–176 (Springer-Verlag, Berlin, Heidelberg, 1987).

  • 4.

    Fuerst, J. A. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl. Microbiol. Biotechnol. 98, 7331–7347 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Mehbub, M. F., Lei, J., Franco, C. & Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs 12, 4539–4577 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. U. S. A. 101, 16222–16227 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 8.

    Noro, J. C., Kalaitzis, J. A. & Neilan, B. A. Bioactive natural products from Papua New Guinea marine sponges. Chem. Biodivers. 9, 2077–2095 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Schirmer, A. et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840–4849 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 10.

    Siegl, A. & Hentschel, U. PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environ. Microbiol. Rep. 2, 507–513 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Graça, A. P. et al. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS ONE 8, e78992 (2013).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 12.

    Santos, O. C. S. et al. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast. Lett. Appl. Microbiol. 60, 140–147 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Su, P., Wang, D. X., Ding, S. X. & Zhao, J. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp from the coast of Fujian. China. Can. J. Microbiol. 60, 217–225 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Van Soest, R. W. M. et al. World Porifera Database. http://www.marinespecies.org/porifera/. (2020).

  • 15.

    Bertolino, M. et al. Stability of the sponge assemblage of Mediterranean coralligenous concretions along a millennial time span. Mar. Ecol. 35, 149–158 (2014).

    Article 
    ADS 

    Google Scholar 

  • 16.

    Longo, C. et al. Sponges associated with coralligenous formations along the Apulian coasts. Mar. Biodivers. 48, 2151–2163 (2018).

    Article 

    Google Scholar 

  • 17.

    Costa, G. et al. Sponge community variation along the Apulian coasts (Otranto Strait) over a pluri-decennial time span Does water warming drive a sponge diversity increasing in the Mediterranean Sea?. J. Mar. Biol. Assoc. United Kingdom 99, 1519–1534 (2019).

    Article 

    Google Scholar 

  • 18.

    Bertolino, M. et al. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J. Mar. Biol. Assoc. United Kingdom 96, 341–350 (2016).

    Article 

    Google Scholar 

  • 19.

    Bertolino, M. et al. Have climate changes driven the diversity of a Mediterranean coralligenous sponge assemblage on a millennial timescale?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 355–363 (2017).

    Article 

    Google Scholar 

  • 20.

    Gerovasileiou, V. et al. New Mediterranean biodiversity records. Mediterr. Mar. Sci. 18, 355–384 (2017).

    Article 

    Google Scholar 

  • 21.

    Ulman, A. et al. A massive update of non-indigenous species records in Mediterranean marinas. PeerJ 2017, e3954 (2017).

    Article 

    Google Scholar 

  • 22.

    Costantini, M. An analysis of sponge genomes. Gene 342, 321–325 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Costantini, S. et al. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflamm. https://doi.org/10.1155/2015/204975 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Costantini, S. et al. Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. Int. J. Mol. Sci. 18, 2112 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842 (2010).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 26.

    Marra, M. V. et al. Long-term turnover of the sponge fauna in Faro Lake (North-East Sicily, Mediterranean Sea). Ital. J. Zool. 83, 579–588 (2016).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Cárdenas, P., Xavier, J. R., Reveillaud, J., Schander, C. & Rapp, H. T. Molecular phylogeny of the astrophorida (Porifera, Demospongiaep) reveals an unexpected high level of spicule homoplasy. PLoS ONE 6, e18318 (2011).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • 28.

    Erpenbeck, D. et al. The phylogeny of halichondrid demosponges: past and present re-visited with DNA-barcoding data. Org. Divers. Evol. 12, 57–70 (2012).

    Article 

    Google Scholar 

  • 29.

    Abdul Wahab, M. A., Fromont, J., Whalan, S., Webster, N. & Andreakis, N. Combining morphometrics with molecular taxonomy: How different are similar foliose keratose sponges from the Australian tropics?. Mol. Phylogenet. Evol. 73, 23–39 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Wörheide, G. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar. Biol. 148, 907–912 (2006).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Carella, M., Agell, G., Cárdenas, P. & Uriz, M. J. Phylogenetic reassessment of antarctic tetillidae (Demospongiae, Tetractinellida) reveals new genera and genetic similarity among morphologically distinct species. PLoS ONE 11, 1–33 (2016).

    Google Scholar 

  • 32.

    Morrow, C. C. et al. Congruence between nuclear and mitochondrial genes in Demospongiae: a new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Mol. Phylogenet. Evol. 62, 174–190 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Vargas, S. et al. Diversity in a cold hot-spot: DNA-barcoding reveals patterns of evolution among Antarctic demosponges (class demospongiae, phylum Porifera). PLoS ONE 10, 1–17 (2015).

    Google Scholar 

  • 34.

    Yang, Q., Franco, C. M. M., Sorokin, S. J. & Zhang, W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations. Sci. Rep. 7, 1–14 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 35.

    Cosentino, A., Giacobbe, S. & Potoschi, A. The CSI of Faro coastal lake (Messina): a natural observatory for the incoming of marine alien species. Biol. Mar. Mediterr. 16, 132–133 (2009).

    Google Scholar 

  • 36.

    Zagami, G., Costanzo, G. & Crescenti, N. First record in Mediterranean Sea and redescription of the bentho-planktonic calanoid copepod species Pseudocyclops xiphophorus Wells, 1967. J. Mar. Syst. 55, 67–76 (2005).

    Article 

    Google Scholar 

  • 37.

    Zagami, G. et al. Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: rapid invasion in lakes Faro and Ganzirri (central Meditteranean Sea). in Trends in copepod studies. Distribution, biology and ecology (ed. Uttieri, M.) 1–55 (Nova Science Publishers, 2017).

  • 38.

    Saccà, A. & Giuffrè, G. Biogeography and ecology of Rhizodomus tagatzi, a presumptive invasive tintinnid ciliate. J. Plankton Res. 35, 894–906 (2013).

    Article 
    CAS 

    Google Scholar 

  • 39.

    Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Donnarumma, L. et al. Environmental and benthic community patterns of the shallow hydrothermal area of Secca Delle Fumose (Baia, Naples, Italy). Front. Mar. Sci. 6, 1–15 (2019).

    Article 

    Google Scholar 

  • 41.

    Poli, A., Anzelmo, G. & Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar. Drugs 8, 1779–1802 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Shukla, P. J., Nathani, N. M. & Dave, B. P. Marine bacterial exopolysaccharides [EPSs] from extreme environments and their biotechnological applications. Int. J. Res. Biosci. 6, 20–32 (2017).

    Google Scholar 

  • 43.

    Patel, A., Matsakas, L., Rova, U. & Christakopoulos, P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour. Technol. 278, 424–434 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Schultz, J. & Rosado, A. S. Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24, 189–206 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Gloeckner, V. et al. The HMA-LMA dichotomy revisited: An electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Erwin, P. M., Coma, R., López-Sendino, P., Serrano, E. & Ribes, M. Stable symbionts across the HMA-LMA dichotomy: Low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol. Ecol. 91, 1–11 (2015).

    Article 
    CAS 

    Google Scholar 

  • 47.

    Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, 1–13 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Hardoim, C. C. P. & Costa, R. Temporal dynamics of prokaryotic communities in the marine sponge Sarcotragus spinosulus. Mol. Ecol. 23, 3097–3112 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Karimi, E. et al. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol. Ecol. 94, 1–18 (2018).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Mohamed, N. M. et al. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ. Microbiol. 10, 75–86 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Thiel, V. & Imhoff, J. F. Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomol. Eng. 20, 421–423 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Bibi, F., Yasir, M., Al-Sofyani, A., Naseer, M. I. & Azhar, E. I. Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp EA348. Saudi J. Biol. Sci. 27, 1139–1147 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Thakur, A. N. et al. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar. Biotechnol. 7, 245–252 (2005).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Thomas, T. R. A., Kavlekar, D. P. & LokaBharathi, P. A. Marine drugs from sponge-microbe association—A review. Mar. Drugs 8, 1417–1468 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).

    Article 
    CAS 

    Google Scholar 

  • 57.

    Haber, M. & Ilan, M. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp sponges. J. Appl. Microbiol. 116, 519–532 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Öner, Ö. et al. Cultivable sponge-associated Actinobacteria from coastal area of eastern Mediterranean Sea. Adv. Microbiol. 04, 306–316 (2014).

    Article 

    Google Scholar 

  • 59.

    Gonçalves, A. C. S. et al. Draft genome sequence of Vibrio sp strain Vb278, an antagonistic bacterium isolated from the marine sponge Sarcotragus spinosulus. Genome Announc. 3, 2014–2015 (2015).

    Article 

    Google Scholar 

  • 60.

    Cheng, C. et al. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE 10, 1–21 (2015).

    Google Scholar 

  • 61.

    Graça, A. P. et al. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front. Microbiol. 6, 389 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Kuo, J. et al. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. Ann. Microbiol. 69, 253–265 (2019).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Liu, T. et al. Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea. FEMS Microbiol. Ecol. 95, 1–10 (2019).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Hentschel, U. et al. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol. Ecol. 35, 305–312 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Chelossi, E., Milanese, M., Milano, A., Pronzato, R. & Riccardi, G. Characterisation and antimicrobial activity of epibiotic bacteria from Petrosia ficiformis (Porifera, Demospongiae). J. Exp. Mar. Bio. Ecol. 309, 21–33 (2004).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Kennedy, J. et al. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from irish waters. Mar. Biotechnol. 11, 384–396 (2009).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Penesyan, A., Marshall-Jones, Z., Holmstrom, C., Kjelleberg, S. & Egan, S. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol. Ecol. 69, 113–124 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Santos, O. C. S. et al. Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res. Microbiol. 161, 604–612 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Flemer, B. et al. Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. J. Appl. Microbiol. 112, 289–301 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Margassery, L. M., Kennedy, J., O’Gara, F., Dobson, A. D. & Morrissey, J. P. Diversity and antibacterial activity of bacteria isolated from the coastal marine sponges Amphilectus fucorum and Eurypon major. Lett. Appl. Microbiol. 55, 2–8 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Abdelmohsen, U. R. et al. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar. Drugs 12, 2771–2789 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Montalvo, N. F. & Hill, R. T. Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl. Environ. Microbiol. 77, 7207–7216 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 73.

    Cleary, D. F. R. et al. Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system. Indonesia. Mar. Biodivers. 48, 1889–1901 (2018).

    Article 

    Google Scholar 

  • 74.

    Bedard, D. L., Ritalahti, K. M. & Löffler, F. E. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl. Environ. Microbiol. 73, 2513–2521 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 75.

    Taş, N., Van Eekert, M. H. A., De Vos, W. M. & Smidt, H. The little bacteria that can – Diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp in contaminated environments. Microb. Biotechnol. 3, 389–402 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Arnds, J., Knittel, K., Buck, U., Winkel, M. & Amann, R. Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst. Appl. Microbiol. 33, 139–148 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Sizikov, S. et al. Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin–antitoxin modules as features of host-associated Opitutales. Environ. Microbiol. 22, 4669–4688 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Cardman, Z. et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl. Environ. Microbiol. 80, 3749–3756 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 79.

    Cabello-Yeves, P. J. et al. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front. Microbiol. 8, 2131 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    He, S. et al. Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes. MSphere 2, e00277 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Shindo, K. et al. Diapolycopenedioic acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-carotenoic acids produced by a new marine bacterium Rubritalea Squalenifaciens. J. Antibiot. (Tokyo) 61, 185–191 (2008).

    CAS 
    Article 

    Google Scholar 

  • 83.

    Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B. & Schlosser, U. Nitrospira marina gen. nov sp nov: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7 (1986).

    Article 

    Google Scholar 

  • 84.

    Daims, H. & Wagner, M. Nitrospira. Trends Microbiol. 26, 462–463 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Off, S., Alawi, M. & Spieck, E. Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge. Appl. Environ. Microbiol. 76, 4640–4646 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 86.

    Feng, G., Sun, W., Zhang, F., Karthik, L. & Li, Z. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci. Rep. 6, 1–11 (2016).

    CAS 
    Article 

    Google Scholar 

  • 87.

    Andreo-Vidal, A., Sanchez-Amat, A. & Campillo-Brocal, J. C. The Pseudoalteromonas luteoviolacea L-amino acid oxidase with antimicrobial activity is a flavoenzyme. Mar. Drugs 16, 499 (2018).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Saccà, A., Guglielmo, L. & Bruni, V. Vertical and temporal microbial community patterns in a meromictic coastal lake influenced by the Straits of Messina upwelling system. Hydrobiologia 600, 89–104 (2008).

    Article 

    Google Scholar 

  • 89.

    Polese, G. et al. Meiofaunal assemblages of the bay of Nisida and the environmental status of the Phlegraean area (Naples, Southern Italy). Mar. Biodivers. 48, 127–137 (2018).

    Article 

    Google Scholar 

  • 90.

    Gambi, M. C., Tiberti, L. & Mannino, A. M. An update of marine alien species off the Ischia Island (Tyrrhenian Sea) with a closer look at neglected invasions of Lophocladia lallemandii (Rhodophyta). Not. Sibm 75, 58–65 (2019).

    Google Scholar 

  • 91.

    Hooper, J. N. A. ‘Sponguide’. Guide to sponge collection and identification. https://www.academia.edu/34258606/SPONGE_GUIDE_GUIDE_TO_SPONGE_COLLECTION_AND_IDENTIFICATION_Version_August_2000. (2000).

  • 92.

    Rützler, K. Sponges in coral reefs. in Coral reefs: Research methods, monographs on oceanographic methodology (eds. Stoddart, D. R. & Johannes, R. E.) 299–313 (Paris: Unesco, 1978).

  • 93.

    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 94.

    Schmitt, S., Hentschel, U., Zea, S., Dandekar, T. & Wolf, M. ITS-2 and 18S rRNA gene phylogeny of Aplysinidae (Verongida, Demospongiae). J. Mol. Evol. 60, 327–336 (2005).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 95.

    Chombard, C., Boury-Esnault, N. & Tillier, S. Reassessment of homology of morphological characters in Tetractinellid sponges based on molecular data. Syst. Biol. 47, 351–366 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 96.

    Collins, A. G. Phylogeny of medusozoa and the evolution of cnidarian life cycles. J. Evol. Biol. 15, 418–432 (2002).

    Article 

    Google Scholar 

  • 97.

    Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G. & Wörheide, G. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Syst. Biol. 57, 388–405 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Manuel, M. et al. Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Syst. Biol. 52, 311–333 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Wörheide, G., Degnan, B., Hooper, J. & Reitner, J. Phylogeography and taxonomy of the Indo-Pacific reef cave dwelling coralline demosponge Astrosclera willeyana: new data from nuclear internal transcribed spacer sequences. Proc. 9th Int. Coral Reef Symp. 1, 339–346 (2002).

  • 100.

    Meyer, C. P., Geller, J. B. & Paulay, G. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution 59, 113–125 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 101.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 102.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article 
    CAS 

    Google Scholar 

  • 103.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    R Core Team. A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. (2020).

  • 105.

    Urbanek, S. & Horner, J. Cairo: R Graphics device using Cairo graphics library for creating high-quality bitmap (PNG, JPEG, TIFF), vector (PDF, SVG, PostScript) and display (X11 and Win32) output. R package version 1.5–12.2. https://cran.r-project.org/package=Cairo (2020).

  • 106.

    Chao, B. F. Interannual length-of-the-day variation with relation to the southern oscillation/El Nino. Geophys. Res. Lett. 11, 541–544 (1984).

    Article 
    ADS 

    Google Scholar 

  • 107.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 108.

    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).

    MATH 

    Google Scholar 

  • 109.

    Simpson, E. H. Measurment of diversity. Nature 163, 688 (1949).

    MATH 
    Article 
    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT Energy Initiative awards seven Seed Fund grants for early-stage energy research

    Worker-dependent gut symbiosis in an ant