in

Microplastics increase susceptibility of amphibian larvae to the chytrid fungus Batrachochytrium dendrobatidis

  • 1.

    Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35, 1632–1640 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63–82 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Lambert, S. & Wagner, M. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Freshwater Microplastics, 1–23 (2018).

  • 6.

    de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).

    ADS 

    Google Scholar 

  • 7.

    Rist, S., Almroth, B. C., Hartmann, N. B. & Karlsson, T. M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total Environ. 626, 720–726 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 8.

    Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 9.

    Anbumani, S. & Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 25, 14373–14396 (2018).

    CAS 

    Google Scholar 

  • 10.

    Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 11.

    Foley, C. J., Feiner, Z. S., Malinich, T. D. & Höök, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631, 550–559 (2018).

    PubMed 
    ADS 

    Google Scholar 

  • 12.

    Wong, J. K. H., Lee, K. K., Tang, K. H. D. & Yap, P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 719, 137512 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 13.

    Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 14.

    Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608. https://doi.org/10.1093/icb/ict028 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 15.

    Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Viršek, M. K., Lovšin, M. N., Koren, Š, Kržan, A. & Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull. 125, 301–309 (2017).

    PubMed 

    Google Scholar 

  • 17.

    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12480 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. 95, 9031–9036 (1998).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 19.

    Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 371, 20150465 (2016).

    Google Scholar 

  • 20.

    O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 21.

    Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS One 11, e0160746 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Walker, S. et al. Factors driving pathogenicity versus prevalence of the amphibian pathogen Batrachochytrium dendrobatidis and chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).

    PubMed 

    Google Scholar 

  • 23.

    Hite, J. L., Bosch, J., Fernández-Beaskoetxea, S., Medina, D. & Hall, S. R. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid. Proc. R. Soc. B 283, 20160832 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Bosch, J., Carrascal, L. M., Duran, L., Walker, S. & Fisher, M. C. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; Is there a link?. Proc. R. Soc. B 274, 253–260 (2007).

    PubMed 

    Google Scholar 

  • 25.

    Parris, M. J. & Baud, D. R. Interactive effects of a heavy metal and chytridiomycosis on gray treefrog larvae (Hyla chrysoscelis). Copeia 2004, 344–350 (2004).

    Google Scholar 

  • 26.

    Bosch, J. et al. Increased tropospheric ozone levels enhance pathogen infection levels of amphibians. Sci. Total Environ. 759, 143461 (2021).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 27.

    Brown, J. R., Miiller, T. & Kerby, J. L. The interactive effect of an emerging infectious disease and an emerging contaminant on Woodhouse’s toad (Anaxyrus woodhousii) tadpoles. Environ. Toxicol. Chem. 32, 2003–2008 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Hanlon, S. M. & Parris, M. J. The interactive effects of chytrid fungus, pesticides, and exposure timing on gray treefrog (Hyla versicolor) larvae. Environ. Toxicol. Chem. 33, 216–222 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    McMahon, T. A., Romansic, J. M. & Rohr, J. R. Nonmonotonic and monotonic effects of pesticides on the pathogenic fungus Batrachochytrium dendrobatidis in culture and on tadpoles. Environ. Sci. Technol. 47, 7958–7964 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 30.

    Bosch, J., Martinez-Solano, I. & Garcia-Paris, M. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Conserv. 97, 331–337 (2001).

    Google Scholar 

  • 31.

    Tobler, U. & Schmidt, B. R. Within-and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans. PLoS One 5, e10927 (2010).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 32.

    Boyero, L. et al. Microplastics impair amphibian survival, body condition and function. Chemosphere 244, 125500 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 33.

    Fisher, M. C. & Garner, T. W. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral Ecol. 33, 1022–1032 (2008).

    Google Scholar 

  • 35.

    Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).

    PubMed 

    Google Scholar 

  • 36.

    Garner, T. W., Rowcliffe, J. M. & Fisher, M. C. Climate change, chytridiomycosis or condition: An experimental test of amphibian survival. Glob. Change Biol. 17, 667–675 (2011).

    ADS 

    Google Scholar 

  • 37.

    Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. R. Soc. B 282, 20142039 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B 371, 20150454 (2016).

    Google Scholar 

  • 39.

    Ortiz-Santaliestra, M. E., Fisher, M. C., Fernández-Beaskoetxea, S., Fernández-Benéitez, M. J. & Bosch, J. Ambient ultraviolet B radiation and prevalence of infection by Batrachochytrium dendrobatidis in two amphibian species. Conserv. Biol. 25, 975–982 (2011).

    PubMed 

    Google Scholar 

  • 40.

    Rohr, J. R. et al. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proc. R. Soc. B 281, 20140629 (2014).

    PubMed Central 

    Google Scholar 

  • 41.

    Hanlon, S. M., Lynch, K. J., Kerby, J. & Parris, M. J. Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Dis. Aquat. Org. 112, 237–242 (2015).

    Google Scholar 

  • 42.

    Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Gabor, C. R., Bosch, J., Fries, J. N. & Davis, D. R. A non-invasive water-borne hormone assay for amphibians. Amphibia-Reptilia 34, 151–162 (2013).

    Google Scholar 

  • 44.

    Ortiz-Santaliestra, M. E., Marco, A., Fernández, M. J. & Lizana, M. Influence of developmental stage on sensitivity to ammonium nitrate of aquatic stages of amphibians. Environ. Toxicol. Chem. 25, 105–111 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Change Biol. 22, 180–189 (2016).

    ADS 

    Google Scholar 

  • 46.

    Buck, J. C., Truong, L. & Blaustein, A. R. Predation by zooplankton on Batrachochytrium dendrobatidis: Biological control of the deadly amphibian chytrid fungus?. Biodivers. Conserv. 20, 3549–3553 (2011).

    Google Scholar 

  • 47.

    Medina, D., Garner, T. W., Carrascal, L. M. & Bosch, J. Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence. Dis. Aquat. Org. 117, 85–92 (2015).

    Google Scholar 

  • 48.

    Boyle, A. H. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).

    Google Scholar 

  • 49.

    Hu, L. et al. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere 164, 611–617 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 50.

    Boyle, D. G., Boyle, D., Olsen, V., Morgan, J. & Hyatt, A. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60, 141–148 (2004).

    CAS 

    Google Scholar 

  • 51.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).

    Google Scholar 


  • Source: Ecology - nature.com

    X-ray computed tomography (CT) and ESEM-EDS investigations of unusual subfossilized juniper cones

    At UN climate change conference, trying to “keep 1.5 alive”